These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32120835)

  • 1. A Tactile Device Generating Repulsive Forces of Various Human Tissues Fabricated from Magnetic-Responsive Fluid in Porous Polyurethane.
    Park YJ; Yoon JY; Kang BH; Kim GW; Choi SB
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32120835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Tactile Transfer Cell Using Magnetorheological Materials for Robot-Assisted Minimally Invasive Surgery.
    Park YJ; Choi SB
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cylindrical Grip Type of Tactile Device Using Magneto-Responsive Materials Integrated with Surgical Robot Console: Design and Analysis.
    Park YJ; Lee ES; Choi SB
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field-Dependent Stiffness of a Soft Structure Fabricated from Magnetic-Responsive Materials: Magnetorheological Elastomer and Fluid.
    Song BK; Yoon JY; Hong SW; Choi SB
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Soft Structure of Polyurethane and Magnetorheological Fluid: A Proof-of-Concept Investigation of its Stiffness Tunability.
    Hong SW; Yoon JY; Kim SH; Lee SK; Kim YR; Park YJ; Kim GW; Choi SB
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31569486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Young's Moduli of Soft Composites Fabricated from Magnetorheological Materials Containing Microsized Iron Particles.
    Yoon JY; Hong SW; Park YJ; Kim SH; Kim GW; Choi SB
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Magnetic Field on Sound Transmission Loss of the Unit Filled with Magnetorheological Fluid.
    Xu X; Wang Y; Wang Y
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable Capacitive Tactile Sensor Based on Porous Dielectric Composite of Polyurethane and Silver Nanowire.
    Hsieh GW; Chien CY
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Sr-CoFe
    Nugroho KC; Ubaidillah U; Arilasita R; Margono M; Priyambodo BH; Purnama B; Mazlan SA; Choi SB
    Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Squeeze-Strengthening Effect of Silicone Oil-Based Magnetorheological Fluid with Nanometer Fe₃O₄ Addition in High-Torque Magnetorheological Brakes.
    Wang N; Liu X; Zhang X
    J Nanosci Nanotechnol; 2019 May; 19(5):2633-2639. PubMed ID: 30501760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-Liquid State Transformable Magnetorheological Millirobot.
    Chen Z; Lu W; Li Y; Liu P; Yang Y; Jiang L
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30007-30020. PubMed ID: 35727886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field effects on shear and normal stresses in magnetorheological finishing.
    Lambropoulos JC; Miao C; Jacobs SD
    Opt Express; 2010 Sep; 18(19):19713-23. PubMed ID: 20940866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Effect of Fe
    Shixu L; Jing Z; Jun L; Jie F; Miao Y; Song Q
    Langmuir; 2021 Jun; 37(23):7176-7184. PubMed ID: 34096304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheometric and stability analysis of additive infused magnetorheological fluids: a comparative study.
    Sharmili P; Rajesh S; Mahendran M; Saravanakumar S; Abirami G; Sivakami A; Chokkalingam R
    Eur Phys J E Soft Matter; 2023 Feb; 46(2):6. PubMed ID: 36780045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic and Tunable Sound Absorption Properties of an In-Situ Prepared Magnetorheological Foam.
    Muhazeli NS; Nordin NA; Ubaidillah U; Mazlan SA; Abdul Aziz SA; Nazmi N; Yahya I
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33321851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of a bidisperse magnetorheological fluid using the combination of a two-component lattice Boltzmann method and a discrete element approach.
    Fu Y; Yao J; Zhao H; Zhao G; Qiu Y
    Soft Matter; 2019 Sep; 15(34):6867-6877. PubMed ID: 31411231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic propagation velocity in magnetic and magnetorheological fluids due to an external magnetic field.
    Bramantya MA; Motozawa M; Sawada T
    J Phys Condens Matter; 2010 Aug; 22(32):324102. PubMed ID: 21386478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors.
    Zhong W; Ding X; Li W; Shen C; Yadav A; Chen Y; Bao M; Jiang H; Wang D
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31375016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Feasibility study on the preparation of novel negative pressure materials for constructing new matrix of full-thickness skin defect wounds in rats].
    Liu YF; Jiang ZQ; Huang Y; Ni PW; Xie T
    Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2022 Jul; 38(7):650-660. PubMed ID: 35899332
    [No Abstract]   [Full Text] [Related]  

  • 20. Preparation and characterization of diatomite and hydroxyapatite reinforced porous polyurethane foam biocomposites.
    Mustafov SD; Sen F; Seydibeyoglu MO
    Sci Rep; 2020 Aug; 10(1):13308. PubMed ID: 32764640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.