These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32120984)

  • 1. Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial.
    Tonellato M; Piccione M; Gasparotto M; Bellet P; Tibaudo L; Vicentini N; Bergantino E; Menna E; Vitiello L; Di Liddo R; Filippini F
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal commitment of human circulating multipotent cells by carbon nanotube-polymer scaffolds and biomimetic peptides.
    Scapin G; Bertalot T; Vicentini N; Gatti T; Tescari S; De Filippis V; Marega C; Menna E; Gasparella M; Parnigotto PP; Di Liddo R; Filippini F
    Nanomedicine (Lond); 2016 Aug; 11(15):1929-46. PubMed ID: 27246559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.
    Eyni H; Ghorbani S; Shirazi R; Salari Asl L; P Beiranvand S; Soleimani M
    J Biomater Appl; 2017 Sep; 32(3):373-383. PubMed ID: 28752802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold.
    Scapin G; Salice P; Tescari S; Menna E; De Filippis V; Filippini F
    Nanomedicine; 2015 Apr; 11(3):621-32. PubMed ID: 25546847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment.
    Soares DG; Zhang Z; Mohamed F; Eyster TW; de Souza Costa CA; Ma PX
    Acta Biomater; 2018 Mar; 68():190-203. PubMed ID: 29294374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes.
    Holmes B; Castro NJ; Li J; Keidar M; Zhang LG
    Nanotechnology; 2013 Sep; 24(36):365102. PubMed ID: 23959974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials.
    Duan S; Yang X; Mei F; Tang Y; Li X; Shi Y; Mao J; Zhang H; Cai Q
    J Biomed Mater Res A; 2015 Apr; 103(4):1424-35. PubMed ID: 25046153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation.
    Childs A; Hemraz UD; Castro NJ; Fenniri H; Zhang LG
    Biomed Mater; 2013 Dec; 8(6):065003. PubMed ID: 24225196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering.
    Frydrych M; Román S; MacNeil S; Chen B
    Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotubes reinforced poly(L-lactide) scaffolds fabricated by thermally induced phase separation.
    Ma H; Xue L
    Nanotechnology; 2015 Jan; 26(2):025701. PubMed ID: 25525708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO
    Shamsi M; Karimi M; Ghollasi M; Nezafati N; Shahrousvand M; Kamali M; Salimi A
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():114-123. PubMed ID: 28575950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
    Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW
    Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC.
    Spadaccio C; Rainer A; Trombetta M; Vadalá G; Chello M; Covino E; Denaro V; Toyoda Y; Genovese JA
    Ann Biomed Eng; 2009 Jul; 37(7):1376-89. PubMed ID: 19418224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New approach to modification of poly (l-lactic acid) with nano-hydroxyapatite improving functionality of human adipose-derived stromal cells (hASCs) through increased viability and enhanced mitochondrial activity.
    Smieszek A; Marycz K; Szustakiewicz K; Kryszak B; Targonska S; Zawisza K; Watras A; Wiglusz RJ
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():213-226. PubMed ID: 30813022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospinning of poly(lactic acid)/polyhedral oligomeric silsesquioxane nanocomposites and their potential in chondrogenic tissue regeneration.
    Gomez-Sanchez C; Kowalczyk T; Ruiz De Eguino G; Lopez-Arraiza A; Infante A; Rodriguez CI; Kowalewski TA; Sarrionandia M; Aurrekoetxea J
    J Biomater Sci Polym Ed; 2014; 25(8):802-25. PubMed ID: 24754323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.
    Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393.
    Conoscenti G; Carfì Pavia F; Ongaro A; Brucato V; Goegele C; Schwarz S; Boccaccini AR; Stoelzel K; La Carrubba V; Schulze-Tanzil G
    Connect Tissue Res; 2019 Jul; 60(4):344-357. PubMed ID: 30348015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurogenic differentiation of human conjunctiva mesenchymal stem cells on a nanofibrous scaffold.
    Soleimani M; Nadri S; Shabani I
    Int J Dev Biol; 2010; 54(8-9):1295-300. PubMed ID: 20857376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.