These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32120985)

  • 1. A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser.
    Tohari MM; Lyras A; S AlSalhi M
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems.
    Bergman DJ; Stockman MI
    Phys Rev Lett; 2003 Jan; 90(2):027402. PubMed ID: 12570577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz Optical Bistability in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems.
    Tohari MM
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33143277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Self-Kerr Nonlinearity in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems Under Low-Intensity Light Irradiance.
    Tohari MM; Lyras A; AlSalhi MS
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30002312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open Resonator Electric Spaser.
    Liu B; Zhu W; Gunapala SD; Stockman MI; Premaratne M
    ACS Nano; 2017 Dec; 11(12):12573-12582. PubMed ID: 29087690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast pulse pumping of topological nanospaser.
    Hunley DC; Oliaei Motlagh SA; Ghimire R; Apalkov V
    J Phys Condens Matter; 2023 May; 35(31):. PubMed ID: 37071999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity.
    Meng X; Guler U; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Sci Rep; 2013; 3():1241. PubMed ID: 23393623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers.
    Kress SJP; Cui J; Rohner P; Kim DK; Antolinez FV; Zaininger KA; Jayanti SV; Richner P; McPeak KM; Poulikakos D; Norris DJ
    Sci Adv; 2017 Sep; 3(9):e1700688. PubMed ID: 28948219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Switching between Slow and Fast Light in the Graphene Nanodisks (GND)-Quantum Dot (QD) Plasmonic Hybrid Systems.
    Almzargah GM; Tohari MM
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spaser as a biological probe.
    Galanzha EI; Weingold R; Nedosekin DA; Sarimollaoglu M; Nolan J; Harrington W; Kuchyanov AS; Parkhomenko RG; Watanabe F; Nima Z; Biris AS; Plekhanov AI; Stockman MI; Zharov VP
    Nat Commun; 2017 Jun; 8():15528. PubMed ID: 28593987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design optimization of spasers considering the degeneracy of excited plasmon modes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    Opt Express; 2013 Jul; 21(13):15335-49. PubMed ID: 23842320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gain without population inversion and superluminal propagation in the metal nanoparticles-graphene nanodisks-quantum dots hybrid systems.
    Tohari MM; Alqahtani MM
    J Phys Condens Matter; 2021 Jun; 33(32):. PubMed ID: 34044384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipolar, time-dynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium.
    Veltri A; Chipouline A; Aradian A
    Sci Rep; 2016 Sep; 6():33018. PubMed ID: 27625072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized surface plasmons in vibrating graphene nanodisks.
    Wang W; Li BH; Stassen E; Mortensen NA; Christensen J
    Nanoscale; 2016 Feb; 8(6):3809-15. PubMed ID: 26815600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal spaser threshold within electrodynamic framework: Shape, size and modes.
    Arnold N; Hrelescu C; Klar TA
    Ann Phys; 2016 Apr; 528(3-4):295-306. PubMed ID: 27158151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength-tunable spasing in the visible.
    Meng X; Kildishev AV; Fujita K; Tanaka K; Shalaev VM
    Nano Lett; 2013 Sep; 13(9):4106-12. PubMed ID: 23915034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.
    Li Q; Pan D; Wei H; Xu H
    Nano Lett; 2018 Mar; 18(3):2009-2015. PubMed ID: 29485884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.