BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32121020)

  • 1. Transmission Characteristics Analysis and Compensation Control of Double Tendon-sheath Driven Manipulator.
    Wu H; Yin M; Xu Z; Zhao Z; Han W
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on force and position control performance of the tendon sheath system with time-varying parameters and flexible robotic arms.
    Tang Y; Pan M; Lin Y; Liang K
    Int J Med Robot; 2023 Aug; 19(4):e2517. PubMed ID: 37042101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion compensated controller for a tendon-sheath-driven flexible endoscopic robot.
    Xu W; Poon CC; Yam Y; Chiu PW
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 27045665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive fuzzy control for tendon-sheath actuated bending-tip system with unknown friction for robotic flexible endoscope.
    Ren F; Wang X; Yu N; Han J
    Front Neurosci; 2024; 18():1330634. PubMed ID: 38595970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RBF network-based adaptive sliding mode control strategy for the tendon-sheath driven joint of a prosthetic hand.
    Yin M; Huang B; Yi Z; Cai S
    Technol Health Care; 2022; 30(5):1155-1165. PubMed ID: 35342063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Tension Sensor Array for Cable-Driven Surgical Robots.
    Zhou Z; Yang J; Runciman M; Avery J; Sun Z; Mylonas G
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery.
    Sun Z; Wang Z; Phee SJ
    Comput Methods Programs Biomed; 2015 Apr; 119(2):77-87. PubMed ID: 25819033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.
    Xu W; Chen J; Lau HYK; Ren H
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27647806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-varying modeling and intelligent compensation control of singletendon-sheath structure of surgical robot.
    Liang K; Tang Y; Jiang X; Wang S; Li J; Wang Y; Pan M
    Proc Inst Mech Eng H; 2023 Apr; 237(4):451-466. PubMed ID: 36882972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, analysis and control of a novel tendon-driven magnetic resonance-guided robotic system for minimally invasive breast surgery.
    Jiang S; Lou J; Yang Z; Dai J; Yu Y
    Proc Inst Mech Eng H; 2015 Sep; 229(9):652-69. PubMed ID: 26334035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration Prediction of the Robotic Arm Based on Elastic Joint Dynamics Modeling.
    Li J; Wang D; Wu X; Xu K; Liu X
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems.
    Liu X; Wiersma RD
    PLoS One; 2019; 14(1):e0210385. PubMed ID: 30633766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery.
    Jiang S; Chen B; Qi F; Cao Y; Ju F; Bai D; Wang Y
    Int J Med Robot; 2020 Apr; 16(2):e2081. PubMed ID: 31955492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and control of cable-driven continuum robot used for minimally invasive surgery.
    Wei X; Ju F; Guo H; Chen B; Wu H
    Proc Inst Mech Eng H; 2023 Jan; 237(1):35-48. PubMed ID: 36457301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots.
    Liang Y; Du Z; Wang W; Sun L
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28974011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Integrated Sensor-Model Approach for Haptic Feedback of Flexible Endoscopic Robots.
    Lai W; Cao L; Tan RX; Tan YC; Li X; Phan PT; Tiong AMH; Tjin SC; Phee SJ
    Ann Biomed Eng; 2020 Jan; 48(1):342-356. PubMed ID: 31485875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Design and Modeling of a Manipulator Tool for a Compact Multiple-Tool Single Port Laparoscopic Robot Platform.
    Wang F; Toombs NJ; Kesavadas T; Ferreira PM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5836-5841. PubMed ID: 31947179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic model and control for a cable-driven continuum manipulator used for minimally invasive surgery.
    Qi F; Chen B; Gao S; She S
    Int J Med Robot; 2021 Jun; 17(3):e2234. PubMed ID: 33497540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.
    Song S; Zhang C; Liu L; Meng MQ
    Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):241-251. PubMed ID: 28983750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.