BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32121104)

  • 1. Investigation and Optimization of the C-ANN Structure in Predicting the Compressive Strength of Foamed Concrete.
    Dao DV; Ly HB; Vu HT; Le TT; Pham BT
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32121104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete.
    Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA
    Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach.
    Song H; Ahmad A; Ostrowski KA; Dudek M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature.
    Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms.
    Ahmad A; Ahmad W; Chaiyasarn K; Ostrowski KA; Aslam F; Zajdel P; Joyklad P
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete.
    Dao DV; Ly HB; Trinh SH; Le TT; Pham BT
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30934566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of ANN architecture for predicting shear strength of fiber reinforcement bars concrete beams.
    Nguyen QH; Ly HB; Nguyen TA; Phan VH; Nguyen LK; Tran VQ
    PLoS One; 2021; 16(4):e0247391. PubMed ID: 33798200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of ANN architecture for predicting the compressive strength of concrete containing GGBFS.
    Tran VQ; Mai HT; Nguyen TA; Ly HB
    PLoS One; 2021; 16(12):e0260847. PubMed ID: 34860842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.
    Safiuddin M; Raman SN; Abdus Salam M; Jumaat MZ
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches.
    Ullah HS; Khushnood RA; Farooq F; Ahmad J; Vatin NI; Ewais DYZ
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and estimation of compressive strength of concrete masonry prism using gradient boosting algorithm.
    Ho LS; Tran VQ
    PLoS One; 2024; 19(3):e0297364. PubMed ID: 38442109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance.
    Wan Z; Xu Y; Šavija B
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete.
    Khan K; Ahmad W; Amin MN; Aslam F; Ahmad A; Al-Faiad MA
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete.
    Pakzad SS; Roshan N; Ghalehnovi M
    Sci Rep; 2023 Mar; 13(1):3646. PubMed ID: 36871074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques.
    Nafees A; Amin MN; Khan K; Nazir K; Ali M; Javed MF; Aslam F; Musarat MA; Vatin NI
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network.
    Bu L; Du G; Hou Q
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance comparison of neural network training algorithms in the modeling properties of steel fiber reinforced concrete.
    Awolusi TF; Oke OL; Akinkurolere OO; Sojobi AO; Aluko OG
    Heliyon; 2019 Jan; 5(1):e01115. PubMed ID: 30623130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational AI Models for Investigating the Radiation Shielding Potential of High-Density Concrete.
    Amin MN; Ahmad I; Iqbal M; Abbas A; Khan K; Faraz MI; Alabdullah AA; Ullah S
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm.
    Huang XY; Wu KY; Wang S; Lu T; Lu YF; Deng WC; Li HM
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.