BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32121141)

  • 21. Digital Light Processing-3D Printing of Thermoset Materials with High Biodegradability from Amino Acid-Derived Acrylamide Monomers.
    Isarn I; Hodásová Ľ; Pérez-Madrigal MM; Estrany F; Armelin E; Bravo F
    Macromol Rapid Commun; 2023 Aug; 44(15):e2300132. PubMed ID: 37191109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review.
    Pérez B; Nykvist H; Brøgger AF; Larsen MB; Falkeborg MF
    Food Chem; 2019 Jul; 287():249-257. PubMed ID: 30857696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the three-dimensional printing technique and printing layer thickness on model accuracy.
    Zhang ZC; Li PL; Chu FT; Shen G
    J Orofac Orthop; 2019 Jul; 80(4):194-204. PubMed ID: 31172199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable Printing of Bionic Multiscale Channel Networks Through Digital Light Processing-Based Three-Dimensional Printing Process.
    Wang Y; Wang Y; Mei D
    3D Print Addit Manuf; 2020 Jun; 7(3):115-125. PubMed ID: 36655197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery.
    Xu X; Awwad S; Diaz-Gomez L; Alvarez-Lorenzo C; Brocchini S; Gaisford S; Goyanes A; Basit AW
    Pharmaceutics; 2021 Sep; 13(9):. PubMed ID: 34575497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Smartphone-Enabled Portable Digital Light Processing 3D Printer.
    Li W; Wang M; Mille LS; Robledo Lara JA; Huerta V; Uribe Velázquez T; Cheng F; Li H; Gong J; Ching T; Murphy CA; Lesha A; Hassan S; Woodfield TBF; Lim KS; Zhang YS
    Adv Mater; 2021 Sep; 33(35):e2102153. PubMed ID: 34278618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Digital Light Processing 3D Printing of Healable and Recyclable Polymers with Tailorable Mechanical Properties.
    Zhu G; Hou Y; Xiang J; Xu J; Zhao N
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34954-34961. PubMed ID: 34270889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of 3D Printability and Biocompatibility of Microfluidic Resin for Fabrication of Solid Microneedles.
    Tabriz AG; Viegas B; Okereke M; Uddin MJ; Lopez EA; Zand N; Ranatunga M; Getti G; Douroumis D
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36143991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatible PEGDA Resin for 3D Printing.
    Warr C; Valdoz JC; Bickham BP; Knight CJ; Franks NA; Chartrand N; Van Ry PM; Christensen KA; Nordin GP; Cook AD
    ACS Appl Bio Mater; 2020 Apr; 3(4):2239-2244. PubMed ID: 32467881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer.
    Borrello J; Nasser P; Iatridis J; Costa KD
    Addit Manuf; 2018 Oct; 23():374-380. PubMed ID: 31106119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application.
    Cheng YL; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():66-73. PubMed ID: 28888018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of Forming Performance and Characterization of DLP 3D Printed Parts.
    Jiang T; Yan B; Jiang M; Xu B; Gao S; Xu Y; Yu Y; Ma T; Qin T
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct 3D printing of monolithic ion exchange adsorbers.
    Simon U; Dimartino S
    J Chromatogr A; 2019 Feb; 1587():119-128. PubMed ID: 30579643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocurable 3D-Printable Systems with Controlled Porosity towards CO
    Chiappone A; Pedico A; Porcu S; Pirri CF; Lamberti A; Roppolo I
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy.
    Kim MJ; Lee SR; Lee MY; Sohn JW; Yun HG; Choi JY; Jeon SW; Suh TS
    PLoS One; 2017; 12(5):e0176227. PubMed ID: 28472175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA.
    Lin CH; Lin YM; Lai YL; Lee SY
    J Prosthet Dent; 2020 Feb; 123(2):349-354. PubMed ID: 31202550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. "Invisible" Digital Light Processing 3D Printing with Near Infrared Light.
    Stevens LM; Tagnon C; Page ZA
    ACS Appl Mater Interfaces; 2022 Jan; ():. PubMed ID: 35080842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.