BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32121172)

  • 21. Rapid multiplex DNA amplification on an inexpensive microdevice for human identification via short tandem repeat analysis.
    DuVall JA; Le Roux D; Thompson BL; Birch C; Nelson DA; Li J; Mills DL; Tsuei AC; Ensenberger MG; Sprecher C; Storts DR; Root BE; Landers JP
    Anal Chim Acta; 2017 Aug; 980():41-49. PubMed ID: 28622802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel, integrated forensic microdevice on a rotation-driven platform: Buccal swab to STR product in less than 2 h.
    Cox JO; DeCarmen TS; Ouyang Y; Strachan B; Sloane H; Connon C; Gibson K; Jackson K; Landers JP; Cruz TD
    Electrophoresis; 2016 Dec; 37(23-24):3046-3058. PubMed ID: 27620618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymerase chain reaction in miniaturized systems: big progress in little devices.
    Spitzack KD; Ugaz VM
    Methods Mol Biol; 2006; 321():97-129. PubMed ID: 16508068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence detection test by black printed circuit board based microfluidic channel for polymerase chain reaction.
    Hwang JS; Kim YS; Song HJ; Kim JD; Park CY
    Technol Health Care; 2015; 24 Suppl 1():S139-46. PubMed ID: 26409548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SLIM Tricks: Tools, Concepts, and Strategies for the Development of Planar Ion Guides.
    Greer C; Kinlein Z; Clowers BH
    J Am Soc Mass Spectrom; 2023 Aug; 34(8):1715-1723. PubMed ID: 37470389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures.
    Urbano-Gámez JD; Valdés-Sánchez L; Aracil C; de la Cerda B; Perdigones F; Plaza Reyes Á; Díaz-Corrales FJ; Relimpio López I; Quero JM
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis.
    Rodriguez I; Lesaicherre M; Tie Y; Zou Q; Yu C; Singh J; Meng LT; Uppili S; Li SF; Gopalakrishnakone P; Selvanayagam ZE
    Electrophoresis; 2003 Jan; 24(1-2):172-8. PubMed ID: 12652588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Editorial for the Special Issue on Lab-on-PCB Devices.
    Perdigones F
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA.
    Oda RP; Strausbauch MA; Huhmer AF; Borson N; Jurrens SR; Craighead J; Wettstein PJ; Eckloff B; Kline B; Landers JP
    Anal Chem; 1998 Oct; 70(20):4361-8. PubMed ID: 9796420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated polymerase chain reaction chips utilizing digital microfluidics.
    Chang YH; Lee GB; Huang FC; Chen YY; Lin JL
    Biomed Microdevices; 2006 Sep; 8(3):215-25. PubMed ID: 16718406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment.
    Fujita T; Ono H; Dodbiba G; Yamaguchi K
    Waste Manag; 2014 Jul; 34(7):1264-73. PubMed ID: 24703485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liberation characteristics after cryogenic modification and air table separation of discarded printed circuit boards.
    Zhou C; Pan Y; Lu M; Yang C
    J Hazard Mater; 2016 Jul; 311():203-9. PubMed ID: 26985873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental investigation on the heat transfer characteristics in process of printed circuit boards pyrolysis under nitrogen flow.
    Du N; Ma H; Lin X; Zhang J; Liu C
    Sci Total Environ; 2018 Sep; 636():1032-1039. PubMed ID: 29913565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated printed circuit board device for cell lysis and nucleic acid extraction.
    Marshall LA; Wu LL; Babikian S; Bachman M; Santiago JG
    Anal Chem; 2012 Nov; 84(21):9640-5. PubMed ID: 23046297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chip devices for miniaturized biotechnology.
    Köhler JM; Henkel T
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):113-25. PubMed ID: 16228204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices.
    Zanoli LM; Spoto G
    Biosensors (Basel); 2013 Mar; 3(1):18-43. PubMed ID: 25587397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiplex PCB-based electrochemical detection of cancer biomarkers using MLPA-barcode approach.
    Sánchez JL; Henry OY; Joda H; Solnestam BW; Kvastad L; Johansson E; Akan P; Lundeberg J; Lladach N; Ramakrishnan D; Riley I; O'Sullivan CK
    Biosens Bioelectron; 2016 Aug; 82():224-32. PubMed ID: 27085955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplex digital microfluidics using serial controls and its applications in glucose sensing.
    Liu X; Cai J; Wang W; Chai Y
    SLAS Technol; 2024 Apr; 29(2):100105. PubMed ID: 37652174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated microfluidic systems for DNA analysis.
    Njoroge SK; Chen HW; Witek MA; Soper SA
    Top Curr Chem; 2011; 304():203-60. PubMed ID: 21607848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential microfluidic sensor on printed circuit board for biological cells analysis.
    Shi D; Guo J; Chen L; Xia C; Yu Z; Ai Y; Li CM; Kang Y; Wang Z
    Electrophoresis; 2015 Aug; 36(16):1854-8. PubMed ID: 25735615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.