BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32121351)

  • 1. Droplet Microfluidics for the ex Vivo Expansion of Human Primary Multiple Myeloma Cells.
    Carreras P; Gonzalez I; Gallardo M; Ortiz-Ruiz A; Martinez-Lopez J
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32121351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Human Hematopoietic Stem Cell Culture in Microdroplets.
    Carreras P; González I; Gallardo M; Ortiz-Ruiz A; Morales ML; Encinas J; Martínez-López J
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche.
    Zhang W; Gu Y; Sun Q; Siegel DS; Tolias P; Yang Z; Lee WY; Zilberberg J
    PLoS One; 2015; 10(5):e0125995. PubMed ID: 25973790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massive and efficient encapsulation of single cells in monodisperse droplets and collagen-alginate microgels using a microfluidic device.
    Liu D; Xuanyuan T; Liu X; Fu W; Liu W
    Front Bioeng Biotechnol; 2023; 11():1281375. PubMed ID: 38033813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled generation of droplets using an electric field in a flow-focusing paper-based device.
    Jiang T; Wu Y
    Electrophoresis; 2022 Feb; 43(4):601-608. PubMed ID: 34747509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic video recognition for cell-encapsulating microfluidic droplets.
    Mao Y; Zhou X; Hu W; Yang W; Cheng Z
    Analyst; 2024 Mar; 149(7):2147-2160. PubMed ID: 38441128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic 3D Environment Based on Microgels as a Model for the Generation of Drug Resistance in Multiple Myeloma.
    Marín-Payá JC; Díaz-Benito B; Martins LA; Trujillo SC; Cordón L; Lanceros-Méndez S; Gallego Ferrer G; Sempere A; Gómez Ribelles JL
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening.
    Houshmand M; Soleimani M; Atashi A; Saglio G; Abdollahi M; Nikougoftar Zarif M
    Tissue Eng Part C Methods; 2017 Feb; 23(2):72-85. PubMed ID: 28007011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC).
    Alessandri K; Feyeux M; Gurchenkov B; Delgado C; Trushko A; Krause KH; Vignjević D; Nassoy P; Roux A
    Lab Chip; 2016 Apr; 16(9):1593-604. PubMed ID: 27025278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single cell-laden protease-sensitive microniches for long-term culture in 3D.
    Lienemann PS; Rossow T; Mao AS; Vallmajo-Martin Q; Ehrbar M; Mooney DJ
    Lab Chip; 2017 Feb; 17(4):727-737. PubMed ID: 28154867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pooled Umbilical Cord Blood Plasma for Culturing UCMSC and Ex Vivo Expanding Umbilical Cord Blood CD34⁺ Cells].
    Wu JY; Lu Y; Chen JS; Wu SQ; Tang XW; Li Y
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2015 Aug; 23(4):1112-9. PubMed ID: 26314456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds.
    Anyaduba TD; Otoo JA; Schlappi TS
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient-specific 3D microfluidic tissue model for multiple myeloma.
    Zhang W; Lee WY; Siegel DS; Tolias P; Zilberberg J
    Tissue Eng Part C Methods; 2014 Aug; 20(8):663-70. PubMed ID: 24294886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of Human Bone Marrow-derived Mesenchymal Stem Cells and MCF-7 Breast Cancer Cells Co-culture Using a 3D Perfused Biomimetic Microfluidic Platform.
    Cimpean AM; Comsa S; Sturza A; Barb AC; Cosma AA; Fenesan MP; Ionescu C; Ile AM; Sarb S; Chis M
    Anticancer Res; 2024 Apr; 44(4):1441-1453. PubMed ID: 38537998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of alginate microspheres prepared by optimized microfluidics parameters for high encapsulation of bioactive molecules.
    Caballero Aguilar LM; Duchi S; Onofrillo C; O'Connell CD; Di Bella C; Moulton SE
    J Colloid Interface Sci; 2021 Apr; 587():240-251. PubMed ID: 33360897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].
    Yuan H; Dong L; Tu R; Du W; Ji S; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan; 30(1):139-46. PubMed ID: 24818488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures.
    Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.