These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32121481)

  • 1. Shape-Adaptive Metastructures with Variable Bandgap Regions by 4D Printing.
    Noroozi R; Bodaghi M; Jafari H; Zolfagharian A; Fotouhi M
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32121481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4D Printing Self-Morphing Structures.
    Bodaghi M; Noroozi R; Zolfagharian A; Fotouhi M; Norouzi S
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31027212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.
    Matlack KH; Bauhofer A; Krödel S; Palermo A; Daraio C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8386-90. PubMed ID: 27410042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System.
    Zhang B; Zhang W; Zhang Z; Zhang YF; Hingorani H; Liu Z; Liu J; Ge Q
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10328-10336. PubMed ID: 30785262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phononic metastructures with ultrawide low frequency three-dimensional bandgaps as broadband low frequency filter.
    Muhammad ; Lim CW
    Sci Rep; 2021 Mar; 11(1):7137. PubMed ID: 33785851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers.
    Chen L; Zhang Y; Ye H; Duan G; Duan H; Ge Q; Wang Z
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18120-18127. PubMed ID: 33830721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-Mechanical Characterization of 4D-Printed Biodegradable Shape-Memory Scaffolds Using Four-Axis 3D-Printing System.
    Slavkovic V; Palic N; Milenkovic S; Zivic F; Grujovic N
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fused Filament Fabrication 4D Printing of a Highly Extensible, Self-Healing, Shape Memory Elastomer Based on Thermoplastic Polymer Blends.
    Peng B; Yang Y; Ju T; Cavicchi KA
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12777-12788. PubMed ID: 33297679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing.
    Zhang B; Li H; Cheng J; Ye H; Sakhaei AH; Yuan C; Rao P; Zhang YF; Chen Z; Wang R; He X; Liu J; Xiao R; Qu S; Ge Q
    Adv Mater; 2021 Jul; 33(27):e2101298. PubMed ID: 33998721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-shape active composites by 3D printing of digital shape memory polymers.
    Wu J; Yuan C; Ding Z; Isakov M; Mao Y; Wang T; Dunn ML; Qi HJ
    Sci Rep; 2016 Apr; 6():24224. PubMed ID: 27071543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Infill Designs for 3D Printed Shape-Memory Components.
    Koske D; Ehrmann A
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation.
    Zhang C; Cai D; Liao P; Su JW; Deng H; Vardhanabhuti B; Ulery BD; Chen SY; Lin J
    Acta Biomater; 2021 Mar; 122():101-110. PubMed ID: 33359298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing.
    Miao JT; Ge M; Peng S; Zhong J; Li Y; Weng Z; Wu L; Zheng L
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40642-40651. PubMed ID: 31577114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fused Filament Fabrication-4D-Printed Shape Memory Polymers: A Review.
    Valvez S; Reis PNB; Susmel L; Berto F
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prestrain Programmable 4D Printing of Nanoceramic Composites with Bioinspired Microstructure.
    Li T; Liu Q; Qi H; Zhai W
    Small; 2022 Nov; 18(47):e2204032. PubMed ID: 36180413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4D printing: Perspectives for the production of sustainable plastics for agriculture.
    Maraveas C; Bayer IS; Bartzanas T
    Biotechnol Adv; 2022; 54():107785. PubMed ID: 34111517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 4D Printable Shape Memory Vitrimer with Repairability and Recyclability through Network Architecture Tailoring from Commercial Poly(ε-caprolactone).
    Joe J; Shin J; Choi YS; Hwang JH; Kim SH; Han J; Park B; Lee W; Park S; Kim YS; Kim DG
    Adv Sci (Weinh); 2021 Dec; 8(24):e2103682. PubMed ID: 34716690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic Nonuniform, Dual-Stimuli Self-Morphing Enabled by Gradient Four-Dimensional Printing.
    Song Z; Ren L; Zhao C; Liu H; Yu Z; Liu Q; Ren L
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6351-6361. PubMed ID: 31920076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Reversible Four-Dimensional Printing of Shape Memory Alloys and Shape Memory Polymers in Structural Engineering: A State-of-the-Art Review.
    Varadharajan S; Vasanthan KS; Agarwal P
    3D Print Addit Manuf; 2024 Jun; 11(3):919-953. PubMed ID: 39359610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization Shape-Memory Situations of a Stimulus Responsive Composite Material.
    Lin WC; Fan FY; Cheng HC; Lin Y; Shen YK; Lai JS; Wang L; Ruslin M
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33669041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.