These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 32121481)
21. 4D Printing of a Digital Shape Memory Polymer with Tunable High Performance. Zhang Y; Huang L; Song H; Ni C; Wu J; Zhao Q; Xie T ACS Appl Mater Interfaces; 2019 Sep; 11(35):32408-32413. PubMed ID: 31412699 [TBL] [Abstract][Full Text] [Related]
22. The Influence of Shape Changing Behaviors from 4D Printing through Material Extrusion Print Patterns and Infill Densities. Nam S; Pei E Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32854309 [TBL] [Abstract][Full Text] [Related]
23. Computational Design of Self-Actuated Deformable Solids via Shape Memory Material. Sun Y; Ouyang W; Liu Z; Ni N; Savoye Y; Song P; Liu L IEEE Trans Vis Comput Graph; 2022 Jul; 28(7):2577-2588. PubMed ID: 33226949 [TBL] [Abstract][Full Text] [Related]
24. Advances in 4D printing: from stimulation to simulation. Pingale P; Dawre S; Dhapte-Pawar V; Dhas N; Rajput A Drug Deliv Transl Res; 2023 Jan; 13(1):164-188. PubMed ID: 35751000 [TBL] [Abstract][Full Text] [Related]
25. Three-Dimensional Printed Shape Memory Objects Based on an Olefin Ionomer of Zinc-Neutralized Poly(ethylene-co-methacrylic acid). Zhao Z; Peng F; Cavicchi KA; Cakmak M; Weiss RA; Vogt BD ACS Appl Mater Interfaces; 2017 Aug; 9(32):27239-27249. PubMed ID: 28741361 [TBL] [Abstract][Full Text] [Related]
26. Fractal-Based Stretchable Circuits via Electric-Field-Driven Microscale 3D Printing for Localized Heating of Shape Memory Polymers in 4D Printing. Zhang YF; Li Z; Li H; Li H; Xiong Y; Zhu X; Lan H; Ge Q ACS Appl Mater Interfaces; 2021 Sep; 13(35):41414-41423. PubMed ID: 33779155 [TBL] [Abstract][Full Text] [Related]
27. Programming Shape-Morphing Behavior of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing. Ren L; Li B; He Y; Song Z; Zhou X; Liu Q; Ren L ACS Appl Mater Interfaces; 2020 Apr; 12(13):15562-15572. PubMed ID: 32157863 [TBL] [Abstract][Full Text] [Related]
28. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Miao S; Zhu W; Castro NJ; Leng J; Zhang LG Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832 [TBL] [Abstract][Full Text] [Related]
29. Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation. Jeong HY; Woo BH; Kim N; Jun YC Sci Rep; 2020 Apr; 10(1):6258. PubMed ID: 32277119 [TBL] [Abstract][Full Text] [Related]
30. 4D Printing via an Unconventional Fused Deposition Modeling Route to High-Performance Thermosets. Chen Q; Han L; Ren J; Rong L; Cao P; Advincula RC ACS Appl Mater Interfaces; 2020 Nov; 12(44):50052-50060. PubMed ID: 33103879 [TBL] [Abstract][Full Text] [Related]
31. Additive Manufacturing of Smart Composite Structures Based on Flexinol Wires. Dudek O; Klein W; Gąsiorek D; Pawlak M Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057215 [TBL] [Abstract][Full Text] [Related]
32. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Zhang W; Wang H; Wang H; Chan JYE; Liu H; Zhang B; Zhang YF; Agarwal K; Yang X; Ranganath AS; Low HY; Ge Q; Yang JKW Nat Commun; 2021 Jan; 12(1):112. PubMed ID: 33397969 [TBL] [Abstract][Full Text] [Related]
33. Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation. Wu Z; Zheng Y; Wang KW Phys Rev E; 2018 Feb; 97(2-1):022209. PubMed ID: 29548145 [TBL] [Abstract][Full Text] [Related]
34. Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Tahouni Y; Krüger F; Poppinga S; Wood D; Pfaff M; Rühe J; Speck T; Menges A Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34144536 [TBL] [Abstract][Full Text] [Related]
35. Four-Dimensional Printed Construct from Temperature-Responsive Self-Folding Feedstock for Pharmaceutical Applications with Machine Learning Modeling. Suryavanshi P; Wang J; Duggal I; Maniruzzaman M; Banerjee S Pharmaceutics; 2023 Apr; 15(4):. PubMed ID: 37111753 [TBL] [Abstract][Full Text] [Related]
36. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinyl alcohol): design concept and 4D printing feasibility. Melocchi A; Inverardi N; Uboldi M; Baldi F; Maroni A; Pandini S; Briatico-Vangosa F; Zema L; Gazzaniga A Int J Pharm; 2019 Mar; 559():299-311. PubMed ID: 30707934 [TBL] [Abstract][Full Text] [Related]
37. 4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation. Zhang Y; Wang Q; Yi S; Lin Z; Wang C; Chen Z; Jiang L ACS Appl Mater Interfaces; 2021 Jan; 13(3):4174-4184. PubMed ID: 33398983 [TBL] [Abstract][Full Text] [Related]
38. 4D printing and stimuli-responsive materials in biomedical aspects. Lui YS; Sow WT; Tan LP; Wu Y; Lai Y; Li H Acta Biomater; 2019 Jul; 92():19-36. PubMed ID: 31071476 [TBL] [Abstract][Full Text] [Related]
39. 4D-printed bilayer hydrogel with adjustable bending degree for enteroatmospheric fistula closure. Qu G; Huang J; Li Z; Jiang Y; Liu Y; Chen K; Xu Z; Zhao Y; Gu G; Wu X; Ren J Mater Today Bio; 2022 Dec; 16():100363. PubMed ID: 35898440 [TBL] [Abstract][Full Text] [Related]
40. Significance of 4D printing for dentistry: Materials, process, and potentials. Javaid M; Haleem A; Singh RP; Rab S; Suman R; Kumar L J Oral Biol Craniofac Res; 2022; 12(3):388-395. PubMed ID: 36440433 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]