BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32121487)

  • 21. Characterization of human paraoxonase 1 variants suggest that His residues at 115 and 134 positions are not always needed for the lactonase/arylesterase activities of the enzyme.
    Bajaj P; Tripathy RK; Aggarwal G; Pande AH
    Protein Sci; 2013 Dec; 22(12):1799-807. PubMed ID: 24123308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.
    Hawwa R; Larsen SD; Ratia K; Mesecar AD
    J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents.
    Kirby SD; Norris JR; Richard Smith J; Bahnson BJ; Cerasoli DM
    Chem Biol Interact; 2013 Mar; 203(1):181-5. PubMed ID: 23159884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template.
    Meier MM; Rajendran C; Malisi C; Fox NG; Xu C; Schlee S; Barondeau DP; Höcker B; Sterner R; Raushel FM
    J Am Chem Soc; 2013 Aug; 135(31):11670-7. PubMed ID: 23837603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase.
    Jacquet P; Hiblot J; Daudé D; Bergonzi C; Gotthard G; Armstrong N; Chabrière E; Elias M
    Sci Rep; 2017 Dec; 7(1):16745. PubMed ID: 29196634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Innovative Biocatalysts as Tools to Detect and Inactivate Nerve Agents.
    Porzio E; Bettazzi F; Mandrich L; Del Giudice I; Restaino OF; Laschi S; Febbraio F; De Luca V; Borzacchiello MG; Carusone TM; Worek F; Pisanti A; Porcaro P; Schiraldi C; De Rosa M; Palchetti I; Manco G
    Sci Rep; 2018 Sep; 8(1):13773. PubMed ID: 30214052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural characterization of the catalytic calcium-binding site in diisopropyl fluorophosphatase (DFPase)--comparison with related beta-propeller enzymes.
    Blum MM; Chen JC
    Chem Biol Interact; 2010 Sep; 187(1-3):373-9. PubMed ID: 20206152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox.
    Hiblot J; Gotthard G; Chabriere E; Elias M
    Sci Rep; 2012; 2():779. PubMed ID: 23139857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a phosphotriesterase-like lactonase from the hyperthermoacidophilic crenarchaeon Vulcanisaeta moutnovskia.
    Kallnik V; Bunescu A; Sayer C; Bräsen C; Wohlgemuth R; Littlechild J; Siebers B
    J Biotechnol; 2014 Nov; 190():11-7. PubMed ID: 24858677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving Properties of Recombinant SsoPox by Site-Specific Pegylation.
    Parikh H; Bajaj P; Tripathy RK; Pande AH
    Protein Pept Lett; 2015; 22(12):1098-103. PubMed ID: 26428299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphotriesterase-Magnetic Nanoparticle Bioconjugates with Improved Enzyme Activity in a Biocatalytic Membrane Reactor.
    Gebreyohannes AY; Mazzei R; Marei Abdelrahim MY; Vitola G; Porzio E; Manco G; Barboiu M; Giorno L
    Bioconjug Chem; 2018 Jun; 29(6):2001-2008. PubMed ID: 29792416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.
    Zhang Y; An J; Yang GY; Bai A; Zheng B; Lou Z; Wu G; Ye W; Chen HF; Feng Y; Manco G
    PLoS One; 2015; 10(2):e0115130. PubMed ID: 25706379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents.
    Bigley AN; Raushel FM
    Chem Biol Interact; 2019 Aug; 308():80-88. PubMed ID: 31100274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Del Vecchio P; Elias M; Merone L; Graziano G; Dupuy J; Mandrich L; Carullo P; Fournier B; Rochu D; Rossi M; Masson P; Chabriere E; Manco G
    Extremophiles; 2009 May; 13(3):461-70. PubMed ID: 19247785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analogues with fluorescent leaving groups for screening and selection of enzymes that efficiently hydrolyze organophosphorus nerve agents.
    Briseño-Roa L; Hill J; Notman S; Sellers D; Smith AP; Timperley CM; Wetherell J; Williams NH; Williams GR; Fersht AR; Griffiths AD
    J Med Chem; 2006 Jan; 49(1):246-55. PubMed ID: 16392809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Docking, Metal Substitution and Hydrolysis Reaction of Chiral Substrates of Phosphotriesterase.
    de Castro AA; Caetano MS; Silva TC; Mancini DT; Rocha EP; da Cunha EF; Ramalho TC
    Comb Chem High Throughput Screen; 2016; 19(4):334-44. PubMed ID: 27012528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase.
    Bzdrenga J; Hiblot J; Gotthard G; Champion C; Elias M; Chabriere E
    BMC Res Notes; 2014 Jun; 7():333. PubMed ID: 24894602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphotriesterase variants with high methylphosphonatase activity and strong negative trade-off against phosphotriesters.
    Briseño-Roa L; Timperley CM; Griffiths AD; Fersht AR
    Protein Eng Des Sel; 2011 Jan; 24(1-2):151-9. PubMed ID: 21037279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro.
    Goldsmith M; Eckstein S; Ashani Y; Greisen P; Leader H; Sussman JL; Aggarwal N; Ovchinnikov S; Tawfik DS; Baker D; Thiermann H; Worek F
    Arch Toxicol; 2016 Nov; 90(11):2711-2724. PubMed ID: 26612364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis.
    Bigley AN; Xu C; Henderson TJ; Harvey SP; Raushel FM
    J Am Chem Soc; 2013 Jul; 135(28):10426-32. PubMed ID: 23789980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.