These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32121487)

  • 61. Dramatic differences in organophosphorus hydrolase activity between human and chimeric recombinant mammalian paraoxonase-1 enzymes.
    Otto TC; Harsch CK; Yeung DT; Magliery TJ; Cerasoli DM; Lenz DE
    Biochemistry; 2009 Nov; 48(43):10416-22. PubMed ID: 19764813
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Assessing the stoichiometric efficacy of mammalian expressed paraoxonase-1 variant I-F11 to afford protection against G-type nerve agents.
    Mata DG; Sabnekar P; Watson CA; Rezk PE; Chilukuri N
    Chem Biol Interact; 2016 Nov; 259(Pt B):233-241. PubMed ID: 27083144
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Efficient hydrolysis of the chemical warfare nerve agent tabun by recombinant and purified human and rabbit serum paraoxonase 1.
    Valiyaveettil M; Alamneh Y; Biggemann L; Soojhawon I; Doctor BP; Nambiar MP
    Biochem Biophys Res Commun; 2010 Dec; 403(1):97-102. PubMed ID: 21040699
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A novel thermostable arylesterase from the archaeon Sulfolobus solfataricus P1: purification, characterization, and expression.
    Park YJ; Yoon SJ; Lee HB
    J Bacteriol; 2008 Dec; 190(24):8086-95. PubMed ID: 18931117
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus islandicus lactonase.
    Gotthard G; Hiblot J; Elias M; Chabrière E
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Mar; 67(Pt 3):354-7. PubMed ID: 21393842
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Paraoxonase activity against nerve gases measured by capillary electrophoresis and characterization of human serum paraoxonase (PON1) polymorphism in the coding region (Q192R).
    Kanamori-Kataoka M; Seto Y
    Anal Biochem; 2009 Feb; 385(1):94-100. PubMed ID: 18952040
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Overcoming the Challenges of Enzyme Evolution To Adapt Phosphotriesterase for V-Agent Decontamination.
    Bigley AN; Desormeaux E; Xiang DF; Bae SY; Harvey SP; Raushel FM
    Biochemistry; 2019 Apr; 58(15):2039-2053. PubMed ID: 30893549
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design.
    Melzer M; Chen JC; Heidenreich A; Gäb J; Koller M; Kehe K; Blum MM
    J Am Chem Soc; 2009 Dec; 131(47):17226-32. PubMed ID: 19894712
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enzymatic Decontamination of G-Type, V-Type and Novichok Nerve Agents.
    Jacquet P; Rémy B; Bross RPT; van Grol M; Gaucher F; Chabrière E; de Koning MC; Daudé D
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360916
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A catalytic bioscavenger with improved stability and reduced susceptibility to oxidation for treatment of acute poisoning with neurotoxic organophosphorus compounds.
    Job L; Köhler A; Escher B; Worek F; Skerra A
    Toxicol Lett; 2020 Mar; 321():138-145. PubMed ID: 31891759
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Degradation of nerve agents by an organophosphate-degrading agent (OpdA).
    Dawson RM; Pantelidis S; Rose HR; Kotsonis SE
    J Hazard Mater; 2008 Sep; 157(2-3):308-14. PubMed ID: 18258361
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers.
    Goldsmith M; Aggarwal N; Ashani Y; Jubran H; Greisen PJ; Ovchinnikov S; Leader H; Baker D; Sussman JL; Goldenzweig A; Fleishman SJ; Tawfik DS
    Protein Eng Des Sel; 2017 Apr; 30(4):333-345. PubMed ID: 28159998
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Crystal structure at 1.8 A resolution and identification of active site residues of Sulfolobus solfataricus peptidyl-tRNA hydrolase.
    Fromant M; Schmitt E; Mechulam Y; Lazennec C; Plateau P; Blanquet S
    Biochemistry; 2005 Mar; 44(11):4294-301. PubMed ID: 15766258
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Steady-State Kinetics of Enzyme-Catalyzed Hydrolysis of Echothiophate, a P-S Bonded Organophosphorus as Monitored by Spectrofluorimetry.
    Zueva IV; Lushchekina SV; Daudé D; Chabrière E; Masson P
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32192230
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions.
    Hoque MA; Zhang Y; Chen L; Yang G; Khatun MA; Chen H; Hao L; Feng Y
    ACS Chem Biol; 2017 May; 12(5):1188-1193. PubMed ID: 28323400
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An OPAA enzyme mutant with increased catalytic efficiency on the nerve agents sarin, soman, and GP.
    Bae SY; Myslinski JM; McMahon LR; Height JJ; Bigley AN; Raushel FM; Harvey SP
    Enzyme Microb Technol; 2018 May; 112():65-71. PubMed ID: 29499783
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity.
    Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H
    Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Crystal structure of VmoLac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia.
    Hiblot J; Bzdrenga J; Champion C; Chabriere E; Elias M
    Sci Rep; 2015 Feb; 5():8372. PubMed ID: 25670483
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mutational analysis of divalent metal ion binding in the active site of class II α-mannosidase from Sulfolobus solfataricus.
    Hansen DK; Webb H; Nielsen JW; Harris P; Winther JR; Willemoës M
    Biochemistry; 2015 Mar; 54(11):2032-9. PubMed ID: 25751413
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular binding scaffolds increase local substrate concentration enhancing the enzymatic hydrolysis of VX nerve agent.
    Lang X; Hong X; Baker CA; Otto TC; Wheeldon I
    Biotechnol Bioeng; 2020 Jul; 117(7):1970-1978. PubMed ID: 32239488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.