These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 32121667)
21. Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest. Chen J; Duan Y; Hu Y; Li W; Sun D; Hu H; Xie J BMC Plant Biol; 2019 May; 19(1):219. PubMed ID: 31132986 [TBL] [Abstract][Full Text] [Related]
22. Degradation of cellulose by basidiomycetous fungi. Baldrian P; Valásková V FEMS Microbiol Rev; 2008 May; 32(3):501-21. PubMed ID: 18371173 [TBL] [Abstract][Full Text] [Related]
23. Physiological Characteristics and Comparative Secretome Analysis of Cai Y; Ma X; Zhang Q; Yu F; Zhao Q; Huang W; Song J; Liu W Front Microbiol; 2021; 12():636344. PubMed ID: 34113321 [TBL] [Abstract][Full Text] [Related]
24. Regulation of plant biomass utilization in Aspergillus. Kowalczyk JE; Benoit I; de Vries RP Adv Appl Microbiol; 2014; 88():31-56. PubMed ID: 24767425 [TBL] [Abstract][Full Text] [Related]
25. Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Bentil JA; Thygesen A; Mensah M; Lange L; Meyer AS Appl Microbiol Biotechnol; 2018 Jul; 102(14):5827-5839. PubMed ID: 29766241 [TBL] [Abstract][Full Text] [Related]
26. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Yoshida M; Liu Y; Uchida S; Kawarada K; Ukagami Y; Ichinose H; Kaneko S; Fukuda K Biosci Biotechnol Biochem; 2008 Mar; 72(3):805-10. PubMed ID: 18323635 [TBL] [Abstract][Full Text] [Related]
27. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions. Tan MS; Moore SC; Tabor RF; Fegan N; Rahman S; Dykes GA BMC Microbiol; 2016 Sep; 16():212. PubMed ID: 27629769 [TBL] [Abstract][Full Text] [Related]
28. Cellulose degradation by polysaccharide monooxygenases. Beeson WT; Vu VV; Span EA; Phillips CM; Marletta MA Annu Rev Biochem; 2015; 84():923-46. PubMed ID: 25784051 [TBL] [Abstract][Full Text] [Related]
29. Biomass degrading enzymes from anaerobic rumen fungi. Chen H; Li XL; Ljungdahl LG SAAS Bull Biochem Biotechnol; 1995; 8():1-6. PubMed ID: 7546571 [TBL] [Abstract][Full Text] [Related]
30. Engineering of Bioenergy Crops: Dominant Genetic Approaches to Improve Polysaccharide Properties and Composition in Biomass. Brandon AG; Scheller HV Front Plant Sci; 2020; 11():282. PubMed ID: 32218797 [TBL] [Abstract][Full Text] [Related]
31. Divergent microbial communities in groundwater and overlying soils exhibit functional redundancy for plant-polysaccharide degradation. Taubert M; Stähly J; Kolb S; Küsel K PLoS One; 2019; 14(3):e0212937. PubMed ID: 30865693 [TBL] [Abstract][Full Text] [Related]
32. Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides. Aburaya S; Aoki W; Kuroda K; Minakuchi H; Ueda M BMC Microbiol; 2019 Jun; 19(1):118. PubMed ID: 31159733 [TBL] [Abstract][Full Text] [Related]
33. Biomass conversion: fermentation chemicals and fuels. Detroy RW; St Julian G Crit Rev Microbiol; 1983; 10(3):203-28. PubMed ID: 6354591 [TBL] [Abstract][Full Text] [Related]
34. Optimization of nucleotide sugar supply for polysaccharide formation via thermodynamic buffering. Kleczkowski LA; Igamberdiev AU Biochem J; 2020 Jan; 477(2):341-356. PubMed ID: 31967651 [TBL] [Abstract][Full Text] [Related]
35. Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases. Berrin JG; Rosso MN; Abou Hachem M Carbohydr Res; 2017 Aug; 448():155-160. PubMed ID: 28535872 [TBL] [Abstract][Full Text] [Related]
36. Profiling Cell Wall Monosaccharides and Nucleotide-Sugars from Plants. Rautengarten C; Heazlewood JL; Ebert B Curr Protoc Plant Biol; 2019 Jun; 4(2):e20092. PubMed ID: 31187943 [TBL] [Abstract][Full Text] [Related]
37. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass. Boutard M; Cerisy T; Nogue PY; Alberti A; Weissenbach J; Salanoubat M; Tolonen AC PLoS Genet; 2014 Nov; 10(11):e1004773. PubMed ID: 25393313 [TBL] [Abstract][Full Text] [Related]
38. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. de Vries RP Appl Microbiol Biotechnol; 2003 Mar; 61(1):10-20. PubMed ID: 12658510 [TBL] [Abstract][Full Text] [Related]
39. THE BIOSYNTHESIS OF POLYSACCHARIDES. INCORPORATION OF D-(1-14C)GLUCOSE AND D-(6-14C)GLUCOSE INTO PLUM-LEAF POLYSACCHARIDES. ANDREWS P; HOUGH L; PICKEN JM Biochem J; 1965 Jan; 94(1):75-80. PubMed ID: 14342252 [TBL] [Abstract][Full Text] [Related]
40. Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network. Khosravi C; Kowalczyk JE; Chroumpi T; Battaglia E; Aguilar Pontes MV; Peng M; Wiebenga A; Ng V; Lipzen A; He G; Bauer D; Grigoriev IV; de Vries RP BMC Genomics; 2019 Nov; 20(1):853. PubMed ID: 31726994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]