These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32121691)

  • 1. Mesoscale optical turbulence simulations above Tibetan Plateau: first attempt.
    Qing C; Wu X; Li X; Luo T; Su C; Zhu W
    Opt Express; 2020 Feb; 28(4):4571-4586. PubMed ID: 32121691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of turbulence parameters in the atmospheric boundary layer of the Bohai Sea, China, by coherent Doppler lidar and mesoscale model.
    Jin X; Song X; Yang Y; Wang M; Shao S; Zheng H
    Opt Express; 2022 Apr; 30(8):13263-13277. PubMed ID: 35472943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New $\text{C}_{n}^{2}$ statistical model based on first radiosonde turbulence observation over Lhasa.
    Han Y; Wu X; Luo T; Qing C; Yang Q; Jin X; Liu N; Wu S; Su C
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jun; 37(6):995-1001. PubMed ID: 32543601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating and measurement of atmospheric optical turbulence according to balloon-borne radiosonde for three sites in China.
    Bi C; Qian X; Liu Q; Zhu W; Li X; Luo T; Wu X; Qing C
    J Opt Soc Am A Opt Image Sci Vis; 2020 Nov; 37(11):1785-1794. PubMed ID: 33175755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau.
    Chen X; Añel JA; Su Z; de la Torre L; Kelder H; van Peet J; Ma Y
    PLoS One; 2013; 8(2):e56909. PubMed ID: 23451108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous daytime and nighttime forecast of atmospheric optical turbulence from numerical weather prediction models.
    Quatresooz F; Griffiths R; Bardou L; Wilson R; Osborn J; Vanhoenacker-Janvier D; Oestges C
    Opt Express; 2023 Oct; 31(21):33850-33872. PubMed ID: 37859156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation and characterization of atmospheric turbulence in the free atmosphere above the Tibetan Plateau using the Thorpe method.
    Hu X; Wu X; Yang Q; Guo Y; Wang Z; Qing C; Li X; Qian X
    Appl Opt; 2023 Feb; 62(4):1115-1122. PubMed ID: 36821172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multisensor evaluation of the asymmetric convective model, version 2, in southeast Texas.
    Kolling JS; Pleim JE; Jeffries HE; Vizuete W
    J Air Waste Manag Assoc; 2013 Jan; 63(1):41-53. PubMed ID: 23447863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PML: a generalized monitor of atmospheric turbulence profile with high vertical resolution.
    Chabé J; Aristidi E; Ziad A; Lantéri H; Fanteï-Caujolle Y; Giordano C; Borgnino J; Marjani M; Renaud C
    Appl Opt; 2020 Sep; 59(25):7574-7584. PubMed ID: 32902457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercomparison of flux-, gradient-, and variance-based optical turbulence (
    Pierzyna M; Hartogensis O; Basu S; Saathof R
    Appl Opt; 2024 Jun; 63(16):E107-E119. PubMed ID: 38856605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Night-time measurements of astronomical seeing at Dome A in Antarctica.
    Ma B; Shang Z; Hu Y; Hu K; Wang Y; Yang X; Ashley MCB; Hickson P; Jiang P
    Nature; 2020 Jul; 583(7818):771-774. PubMed ID: 32728236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring the turbulence profile in the lower atmospheric boundary layer.
    van Iersel M; Paulson DA; Wu C; Ferlic NA; Rzasa JR; Davis CC; Walker M; Bowden M; Spychalsky J; Titus F
    Appl Opt; 2019 Sep; 58(25):6934-6941. PubMed ID: 31503665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of behavior of optical turbulence during summer in the surface layer above the Antarctic Plateau using the Polar WRF model.
    Yang Q; Wu X; Han Y; Qing C
    Appl Opt; 2021 May; 60(14):4084-4094. PubMed ID: 33983160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of data spatial vertical resolution on the estimation of vertical profiles of the refractive index structure constant.
    Hu X; Wu X; Yang Q; Guo Y; Wang Z; Yan C; Qiao Z; Qing C; Li X; Qian X
    Opt Express; 2023 Jul; 31(16):25815-25828. PubMed ID: 37710457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstrating 24-hour continuous vertical monitoring of atmospheric optical turbulence.
    Griffiths R; Osborn J; Farley O; Butterley T; Townson MJ; Wilson R
    Opt Express; 2023 Feb; 31(4):6730-6740. PubMed ID: 36823923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the Vertical Structure of the Coastal Boundary Layer Integrating Surface Measurements and Ground-Based Remote Sensing.
    Lo Feudo T; Calidonna CR; Avolio E; Sempreviva AM
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling.
    Xu R; Tie X; Li G; Zhao S; Cao J; Feng T; Long X
    Sci Total Environ; 2018 Dec; 645():901-912. PubMed ID: 30032086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exceptional astronomical seeing conditions above Dome C in Antarctica.
    Lawrence JS; Ashley MC; Tokovinin A; Travouillon T
    Nature; 2004 Sep; 431(7006):278-81. PubMed ID: 15372024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approach for reconstructing anisoplanatic adaptive optics images.
    Aubailly M; Roggemann MC; Schulz TJ
    Appl Opt; 2007 Aug; 46(24):6055-63. PubMed ID: 17712366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different models for ground-level atmospheric turbulence strength (C(n)(2)) prediction with a new model according to local weather data for FSO applications.
    Arockia Bazil Raj A; Arputha Vijaya Selvi J; Durairaj S
    Appl Opt; 2015 Feb; 54(4):802-15. PubMed ID: 25967791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.