These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 32121743)
1. Multi-wavelength coherent random laser in bio-microfibers. Xie Z; Xie K; Hu T; Ma J; Zhang J; Ma R; Cheng X; Li J; Hu Z Opt Express; 2020 Feb; 28(4):5179-5188. PubMed ID: 32121743 [TBL] [Abstract][Full Text] [Related]
2. Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori. Wadbua P; Promdonkoy B; Maensiri S; Siri S Int J Biol Macromol; 2010 Jun; 46(5):493-501. PubMed ID: 20338193 [TBL] [Abstract][Full Text] [Related]
3. Random lasing and amplified spontaneous emission from silk inverse opals: Optical gain enhancement via protein scatterers. Umar M; Min K; Kim S; Kim S Sci Rep; 2019 Nov; 9(1):16266. PubMed ID: 31700045 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of silk fiber with and without sericin component: a comparison between Bombyx mori and Philosamia ricini silks. Prasong S; Yaowalak S; Wilaiwan S Pak J Biol Sci; 2009 Jun; 12(11):872-6. PubMed ID: 19803122 [TBL] [Abstract][Full Text] [Related]
5. Near-infrared characterization on the secondary structure of regenerated Bombyx mori silk fibroin. Mo C; Wu P; Chen X; Shao Z Appl Spectrosc; 2006 Dec; 60(12):1438-41. PubMed ID: 17217594 [TBL] [Abstract][Full Text] [Related]
6. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins. Yang M; Asakura T J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994 [TBL] [Abstract][Full Text] [Related]
7. Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm. Hossain KS; Ochi A; Ooyama E; Magoshi J; Nemoto N Biomacromolecules; 2003; 4(2):350-9. PubMed ID: 12625731 [TBL] [Abstract][Full Text] [Related]
8. Electrospinning of silk fibroin from all aqueous solution at low concentration. Kishimoto Y; Morikawa H; Yamanaka S; Tamada Y Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():498-506. PubMed ID: 28183638 [TBL] [Abstract][Full Text] [Related]
9. The fine structure of silk fibroin. Dobb MG; Fraser RD; Macrae TP J Cell Biol; 1967 Feb; 32(2):289-95. PubMed ID: 10976222 [TBL] [Abstract][Full Text] [Related]
10. The Use of Functionalized Silk Fibroin Films as a Platform for Optical Diffraction-Based Sensing Applications. Zhou Z; Shi Z; Cai X; Zhang S; Corder SG; Li X; Zhang Y; Zhang G; Chen L; Liu M; Kaplan DL; Omenetto FG; Mao Y; Tao Z; Tao TH Adv Mater; 2017 Apr; 29(15):. PubMed ID: 28195379 [TBL] [Abstract][Full Text] [Related]
11. Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Ochi A; Hossain KS; Magoshi J; Nemoto N Biomacromolecules; 2002; 3(6):1187-96. PubMed ID: 12425655 [TBL] [Abstract][Full Text] [Related]
12. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. Du S; Zhang J; Zhou WT; Li QX; Greene GW; Zhu HJ; Li JL; Wang XG J Colloid Interface Sci; 2016 Sep; 478():316-23. PubMed ID: 27314644 [TBL] [Abstract][Full Text] [Related]
13. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions. Freddi G; Anghileri A; Sampaio S; Buchert J; Monti P; Taddei P J Biotechnol; 2006 Sep; 125(2):281-94. PubMed ID: 16621091 [TBL] [Abstract][Full Text] [Related]
14. Structures of Bombyx mori and Samia cynthia ricini silk fibroins studied with solid-state NMR. Yao J; Nakazawa Y; Asakura T Biomacromolecules; 2004; 5(3):680-8. PubMed ID: 15132647 [TBL] [Abstract][Full Text] [Related]
15. Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH. Zhu J; Shao H; Hu X Int J Biol Macromol; 2007 Oct; 41(4):469-74. PubMed ID: 17689606 [TBL] [Abstract][Full Text] [Related]
16. Optical spectroscopy to investigate the structure of regenerated Bombyx mori silk fibroin in solution. Yang Y; Shao Z; Chen X; Zhou P Biomacromolecules; 2004; 5(3):773-9. PubMed ID: 15132660 [TBL] [Abstract][Full Text] [Related]
17. Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the processed silk fiber (silk II) from Bombyx mori using solid-state (13)C,(15)N, and (2)H NMR. Asakura T; Sugino R; Yao J; Takashima H; Kishore R Biochemistry; 2002 Apr; 41(13):4415-24. PubMed ID: 11914089 [TBL] [Abstract][Full Text] [Related]
18. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1mm microcoil MAS NMR probehead. Yamauchi K; Yamasaki S; Takahashi R; Asakura T Solid State Nucl Magn Reson; 2010 Jul; 38(1):27-30. PubMed ID: 20579856 [TBL] [Abstract][Full Text] [Related]
19. Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and (13)C cross-polarization/magic angle spinning NMR. Asakura T; Yamane T; Nakazawa Y; Kameda T; Ando K Biopolymers; 2001 Apr; 58(5):521-5. PubMed ID: 11241223 [TBL] [Abstract][Full Text] [Related]
20. Structural changes of Bombyx mori fibroin from silk gland to fiber as evidenced by Terahertz spectroscopy and other methods. Wu X; Wu X; Shao M; Yang B Int J Biol Macromol; 2017 Sep; 102():1202-1210. PubMed ID: 28487194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]