These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32121775)

  • 1. Coupled approach for radiometric calibration and parameter retrieval to improve SPM estimations in turbid inland/coastal waters.
    Zhou Q; Li J; Tian L; Song Q; Wei A
    Opt Express; 2020 Feb; 28(4):5567-5586. PubMed ID: 32121775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of suspended particulate matter in turbid coastal waters: application to hyperspectral satellite imagery.
    Zhao J; Cao W; Xu Z; Ye H; Yang Y; Wang G; Zhou W; Sun Z
    Opt Express; 2018 Apr; 26(8):10476-10493. PubMed ID: 29715984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistency of Suspended Particulate Matter Concentration in Turbid Water Retrieved from Sentinel-2 MSI and Landsat-8 OLI Sensors.
    Wang H; Wang J; Cui Y; Yan S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33670917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Estimation of Suspended Particulate Matter From Satellite Ocean Color Imagery.
    Wei J; Wang M; Jiang L; Yu X; Mikelsons K; Shen F
    J Geophys Res Oceans; 2021 Aug; 126(8):e2021JC017303. PubMed ID: 35844263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithm to derive inherent optical properties from remote sensing reflectance in turbid and eutrophic lakes.
    Xue K; Boss E; Ma R; Shen M
    Appl Opt; 2019 Nov; 58(31):8549-8564. PubMed ID: 31873359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decline of suspended particulate matter concentrations in Lake Taihu from 1984 to 2020: observations from Landsat TM and OLI.
    Yin Z; Li J; Liu Y; Zhang F; Wang S; Xie Y; Gao M
    Opt Express; 2022 Jun; 30(13):22572-22589. PubMed ID: 36224952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones.
    Singh RK; Shanmugam P; He X; Schroeder T
    Opt Express; 2019 Aug; 27(16):A1118-A1145. PubMed ID: 31510495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.
    Ruddick KG; Ovidio F; Rijkeboer M
    Appl Opt; 2000 Feb; 39(6):897-912. PubMed ID: 18337965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Monitoring of Suspended Particulate Matter in Tropical Inland Waters by High-Frequency, Above-Water Radiometry.
    Borges HD; Martinez JM; Harmel T; Cicerelli RE; Olivetti D; Roig HL
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency and tidal period observations of suspended particulate matter in coastal waters by AHI/Himawari-8.
    Ding X; He X; Bai Y; Zhu Q; Gong F; Li H; Li J
    Opt Express; 2020 Sep; 28(19):27387-27404. PubMed ID: 32988034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semi-analytical model for estimating total suspended matter in highly turbid waters.
    Zhang Y; Shi K; Zhang Y; Moreno-Madrinan MJ; Li Y; Li N
    Opt Express; 2018 Dec; 26(26):34094-34112. PubMed ID: 30650838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-source high-resolution satellite products in Yangtze Estuary: cross-comparisons and impacts of signal-to-noise ratio and spatial resolution.
    Tang R; Shen F; Pan Y; Ruddick K; Shang P
    Opt Express; 2019 Mar; 27(5):6426-6441. PubMed ID: 30876228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters.
    Yang Q; Stramski D; He MX
    Appl Opt; 2013 Jan; 52(3):359-74. PubMed ID: 23338181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparison of chlorophyll a concentration estimation in Taihu Lake using different methods].
    Li YL; Zhang YL; Li JS; Liu ML
    Huan Jing Ke Xue; 2009 Mar; 30(3):680-6. PubMed ID: 19432312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of satellite data for quality assurance in lake monitoring applications.
    Brivio PA; Giardino C; Zilioli E
    Sci Total Environ; 2001 Mar; 268(1-3):3-18. PubMed ID: 11315744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiometric Calibration and Uncertainty Analysis of KOMPSAT-3A Using the Reflectance-Based Method.
    Jin C; Ahn H; Seo D; Choi C
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple optical model to estimate suspended particulate matter in Yellow River Estuary.
    Qiu Z
    Opt Express; 2013 Nov; 21(23):27891-904. PubMed ID: 24514305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Quantitative retrieval of phytoplankton pigment based on water inherent optical properties in Lake Taihu].
    Zhang YL; Qin BQ
    Huan Jing Ke Xue; 2006 Dec; 27(12):2439-44. PubMed ID: 17304837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of underwater visibility in coastal and inland waters using remote sensing data.
    Kulshreshtha A; Shanmugam P
    Environ Monit Assess; 2017 Apr; 189(4):199. PubMed ID: 28361489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saturation of water reflectance in extremely turbid media based on field measurements, satellite data and bio-optical modelling.
    Luo Y; Doxaran D; Ruddick K; Shen F; Gentili B; Yan L; Huang H
    Opt Express; 2018 Apr; 26(8):10435-10451. PubMed ID: 29715981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.