These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32121807)

  • 1. Mie-type GaAs nanopillar array resonators for negative electron affinity photocathodes.
    Peng X; Poelker M; Stutzman M; Tang B; Zhang S; Zou J
    Opt Express; 2020 Jan; 28(2):860-874. PubMed ID: 32121807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative electron affinity GaAs wire-array photocathodes.
    Zou J; Ge X; Zhang Y; Deng W; Zhu Z; Wang W; Peng X; Chen Z; Chang B
    Opt Express; 2016 Mar; 24(5):4632-4639. PubMed ID: 29092291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subwavelength photocathodes via metal-assisted chemical etching of GaAs for solar hydrogen generation.
    Choi K; Kim K; Moon IK; Bang J; Oh J
    Nanoscale; 2019 Aug; 11(32):15367-15373. PubMed ID: 31389459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of photoemission characteristics between square and circular wire array GaAs photocathodes.
    Deng W; Peng X; Zou J; Wang W; Liu Y; Zhang T; Zhang Y; Zhang D
    Appl Opt; 2017 Nov; 56(32):8991-8995. PubMed ID: 29131180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced blue-green response of nanoarray AlGaAs photocathodes for underwater low-light detection.
    Li S; Zhang Y; Wang Z; Wang D; Tang S; Zhang J; Shi F; Jiao G; Cheng H; Hao G
    Opt Express; 2023 Jul; 31(16):26014-26026. PubMed ID: 37710472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Photoemission on p-Type GaAs Using Surface Acoustic Waves.
    Dong B; Afanasev A; Johnson R; Zaghloul M
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32344596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved quantum efficiency and stability of GaAs photocathode using favorable illumination during activation.
    Feng C; Zhang Y; Qian Y; Liu J; Zhang J; Shi F; Bai X; Zou J
    Ultramicroscopy; 2019 Jul; 202():128-132. PubMed ID: 31028974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of photoemission performance of a GaAs photocathode between white light and monochromatic light illumination during activation.
    Feng C; Liu J; Zhang Y; Qian Y; Song Y; Bao Y; Zhao J
    Appl Opt; 2019 Nov; 58(32):8751-8756. PubMed ID: 31873652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrabright and ultrafast III-V semiconductor photocathodes.
    Karkare S; Boulet L; Cultrera L; Dunham B; Liu X; Schaff W; Bazarov I
    Phys Rev Lett; 2014 Mar; 112(9):097601. PubMed ID: 24655275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Passivation of III-V GaAs Nanopillars by Low-Frequency Plasma Deposition of Silicon Nitride for Active Nanophotonic Devices.
    Jacob B; Camarneiro F; Borme J; Bondarchuk O; Nieder JB; Romeira B
    ACS Appl Electron Mater; 2022 Jul; 4(7):3399-3410. PubMed ID: 36570334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative research on GaAs photocathodes before and after activation.
    Chen L; Qian Y; Chang B
    Appl Opt; 2011 Aug; 50(22):4457-62. PubMed ID: 21833121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escape probability of photoelectrons into vacuum.
    Love JA; Sizelove JR
    Appl Opt; 1968 Aug; 7(8):1559-63. PubMed ID: 20068840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of exponential doping structure on the performance of GaAs photocathodes.
    Niu J; Zhang Y; Chang B; Yang Z; Xiong Y
    Appl Opt; 2009 Oct; 48(29):5445-50. PubMed ID: 19823224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ion beam surface treatment on the emission performance of photocathodes.
    Liu Y; Li F; Tian H; Wang G; Wang X
    Nanoscale Adv; 2022 Aug; 4(17):3517-3523. PubMed ID: 36134348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of gas adsorption on the stability and electronic properties of negative electron affinity GaAs nanowire photocathodes.
    Liu L; Diao Y; Xia S
    J Colloid Interface Sci; 2020 Jul; 572():297-305. PubMed ID: 32251908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Dot Photoluminescence Enhancement in GaAs Nanopillar Oligomers Driven by Collective Magnetic Modes.
    Kroychuk MK; Shorokhov AS; Yagudin DF; Rakhlin MV; Klimko GV; Toropov AA; Shubina TV; Fedyanin AA
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays.
    Bezares FJ; Long JP; Glembocki OJ; Guo J; Rendell RW; Kasica R; Shirey L; Owrutsky JC; Caldwell JD
    Opt Express; 2013 Nov; 21(23):27587-601. PubMed ID: 24514277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoemission from Bialkali Photocathodes through an Atomically Thin Protection Layer.
    Liu F; Guo L; DeFazio J; Pavlenko V; Yamamoto M; Moody NA; Yamaguchi H
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1710-1717. PubMed ID: 34935342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of degradation and recaesiation between GaAs and AlGaAs photocathodes in an unbaked vacuum system.
    Feng C; Zhang Y; Shi F; Qian Y; Cheng H; Zhang J; Liu X; Zhang X
    Appl Opt; 2017 Mar; 56(9):2568-2573. PubMed ID: 28375369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoemission from advanced heterostructured Al(x)Ga(1-x)As/GaAs photocathodes under multilevel built-in electric field.
    Feng C; Zhang Y; Qian Y; Chang B; Shi F; Jiao G; Zou J
    Opt Express; 2015 Jul; 23(15):19478-88. PubMed ID: 26367606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.