These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 32121887)

  • 1. Photonic independent component analysis using an on-chip microring weight bank.
    Ma PY; Tait AN; de Lima TF; Huang C; Shastri BJ; Prucnal PR
    Opt Express; 2020 Jan; 28(2):1827-1844. PubMed ID: 32121887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic principal component analysis using an on-chip microring weight bank.
    Ma PY; Tait AN; de Lima TF; Abbaslou S; Shastri BJ; Prucnal PR
    Opt Express; 2019 Jun; 27(13):18329-18342. PubMed ID: 31252778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-pole microring weight banks.
    Tait AN; Wu AX; Ferreira de Lima T; Nahmias MA; Shastri BJ; Prucnal PR
    Opt Lett; 2018 May; 43(10):2276-2279. PubMed ID: 29762571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blind source separation with integrated photonics and reduced dimensional statistics.
    Ma PY; Tait AN; Zhang W; Karahan EA; Ferreira de Lima T; Huang C; Shastri BJ; Prucnal PR
    Opt Lett; 2020 Dec; 45(23):6494-6497. PubMed ID: 33258844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markov and Semi-Markov switching of source appearances for nonstationary independent component analysis.
    Hirayama J; Maeda S; Ishii S
    IEEE Trans Neural Netw; 2007 Sep; 18(5):1326-42. PubMed ID: 18220183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband physical layer cognitive radio with an integrated photonic processor for blind source separation.
    Zhang W; Tait A; Huang C; Ferreira de Lima T; Bilodeau S; Blow EC; Jha A; Shastri BJ; Prucnal P
    Nat Commun; 2023 Feb; 14(1):1107. PubMed ID: 36849533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures.
    Jutten C; Karhunen J
    Int J Neural Syst; 2004 Oct; 14(5):267-92. PubMed ID: 15593377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic ICA contrast maximisation using OJA's nonlinear PCA algorithm.
    Girolami M; Fyfe C
    Int J Neural Syst; 1997; 8(5-6):661-78. PubMed ID: 10065842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Achievability of Blind Source Separation for High-Dimensional Nonlinear Source Mixtures.
    Isomura T; Toyoizumi T
    Neural Comput; 2021 May; 33(6):1433-1468. PubMed ID: 34496387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic printed photonics: From microring lasers to integrated circuits.
    Zhang C; Zou CL; Zhao Y; Dong CH; Wei C; Wang H; Liu Y; Guo GC; Yao J; Zhao YS
    Sci Adv; 2015 Sep; 1(8):e1500257. PubMed ID: 26601256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis.
    Mijović B; De Vos M; Gligorijević I; Taelman J; Van Huffel S
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2188-96. PubMed ID: 20542760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensional contraction by principal component analysis as preprocessing for independent component analysis at MCG.
    Iwai M; Kobayashi K
    Biomed Eng Lett; 2017 Aug; 7(3):221-227. PubMed ID: 30603169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single Channel Source Separation with ICA-Based Time-Frequency Decomposition.
    Mika D; Budzik G; Józwik J
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Eliminating artifacts of EEG data based on independent component analysis].
    Long F; Wu X; Fan L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):479-83. PubMed ID: 14565018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.
    Funane T; Atsumori H; Katura T; Obata AN; Sato H; Tanikawa Y; Okada E; Kiguchi M
    Neuroimage; 2014 Jan; 85 Pt 1():150-65. PubMed ID: 23439443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Penalized Semialgebraic Deflation ICA Algorithm for the Efficient Extraction of Interictal Epileptic Signals.
    Becker H; Albera L; Comon P; Kachenoura A; Merlet I
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):94-104. PubMed ID: 26625438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis.
    Calhoun VD; Adali T; Stevens MC; Kiehl KA; Pekar JJ
    Neuroimage; 2005 Apr; 25(2):527-38. PubMed ID: 15784432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PWC-ICA: A Method for Stationary Ordered Blind Source Separation with Application to EEG.
    Ball K; Bigdely-Shamlo N; Mullen T; Robbins K
    Comput Intell Neurosci; 2016; 2016():9754813. PubMed ID: 27340397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals.
    Barbati G; Porcaro C; Zappasodi F; Rossini PM; Tecchio F
    Clin Neurophysiol; 2004 May; 115(5):1220-32. PubMed ID: 15066548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator.
    Long Y; Wang J
    Opt Express; 2015 Jul; 23(14):17739-50. PubMed ID: 26191836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.