These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32121951)

  • 1. Experimental probe of a complete 3D photonic band gap.
    Adhikary M; Uppu R; Harteveld CAM; Grishina DA; Vos WL
    Opt Express; 2020 Feb; 28(3):2683-2698. PubMed ID: 32121951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of photonic band gaps in woodpile crystals.
    Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strongly Inhibited Spontaneous Emission of PbS Quantum Dots Covalently Bound to 3D Silicon Photonic Band Gap Crystals.
    Schulz AS; Kozoň M; Vancso GJ; Huskens J; Vos WL
    J Phys Chem C Nanomater Interfaces; 2024 Jun; 128(22):9142-9153. PubMed ID: 38864002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap.
    Leistikow MD; Mosk AP; Yeganegi E; Huisman SR; Lagendijk A; Vos WL
    Phys Rev Lett; 2011 Nov; 107(19):193903. PubMed ID: 22181609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals.
    Liu H; Yao J; Xu D; Wang P
    Opt Express; 2007 Jan; 15(2):695-703. PubMed ID: 19532292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations.
    Wen F; David S; Checoury X; El Kurdi M; Boucaud P
    Opt Express; 2008 Aug; 16(16):12278-89. PubMed ID: 18679505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetric Continuously Tunable Photonic Band Gaps in Blue-Phase Liquid Crystals Switched by an Alternating Current Field.
    Du XW; Hou DS; Li X; Sun DP; Lan JF; Zhu JL; Ye WJ
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):22015-22020. PubMed ID: 31132240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
    Chutinan A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026605. PubMed ID: 15783439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method.
    Dang Z; Breese MB; Recio-Sánchez G; Azimi S; Song J; Liang H; Banas A; Torres-Costa V; Martín-Palma RJ
    Nanoscale Res Lett; 2012 Jul; 7(1):416. PubMed ID: 22824206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals.
    Hossain MM; Chen G; Jia B; Wang XH; Gu M
    Opt Express; 2010 Apr; 18(9):9048-54. PubMed ID: 20588751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material.
    Li J; Jia B; Zhou G; Gu M
    Opt Express; 2006 Oct; 14(22):10740-5. PubMed ID: 19529482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron energy loss and Smith-Purcell radiation in two- and three-dimensional photonic crystals.
    Ochiai T; Ohtaka K
    Opt Express; 2005 Sep; 13(19):7683-98. PubMed ID: 19498796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic band gaps based on tetragonal lattices of slanted pores.
    Toader O; Berciu M; John S
    Phys Rev Lett; 2003 Jun; 90(23):233901. PubMed ID: 12857259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of One-Dimensional Photonic Crystal on Raman Signal Enhancement: A Detailed Experimental Study.
    Krajačić M; Baran N; Tolić A; Mikac L; Ivanda M; Gamulin O; Škrabić M
    Appl Spectrosc; 2024 Jun; ():37028241258101. PubMed ID: 38859755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stealthy and hyperuniform isotropic photonic band gap structure in 3D.
    Siedentop L; Lui G; Maret G; Chaikin PM; Steinhardt PJ; Torquato S; Keim P; Florescu M
    PNAS Nexus; 2024 Sep; 3(9):pgae383. PubMed ID: 39328473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration.
    Chern RL; Chang CC; Chang CC; Hwang RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026704. PubMed ID: 14525145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic Crystal Structures for Photovoltaic Applications.
    Starczewska A; Kępińska M
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phoamtonic designs yield sizeable 3D photonic band gaps.
    Klatt MA; Steinhardt PJ; Torquato S
    Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23480-23486. PubMed ID: 31694882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Demand Design of Tunable Complete Photonic Band Gaps based on Bloch Mode Analysis.
    Li S; Lin H; Meng F; Moss D; Huang X; Jia B
    Sci Rep; 2018 Sep; 8(1):14283. PubMed ID: 30250273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.