These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32121971)

  • 1. Pockels-effect-based adiabatic frequency conversion in ultrahigh-Q microresonators.
    Minet Y; Reis L; Szabados J; Werner CS; Zappe H; Buse K; Breunig I
    Opt Express; 2020 Feb; 28(3):2939-2947. PubMed ID: 32121971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Frequency Conversion in a Degenerate χ^{(2)} Microresonator.
    Wang JQ; Yang YH; Li M; Hu XX; Surya JB; Xu XB; Dong CH; Guo GC; Tang HX; Zou CL
    Phys Rev Lett; 2021 Apr; 126(13):133601. PubMed ID: 33861096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous adiabatic frequency conversion for FMCW-LiDAR.
    Mrokon A; Oehler J; Breunig I
    Sci Rep; 2024 Feb; 14(1):4990. PubMed ID: 38424205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically induced adiabatic frequency conversion in an integrated lithium niobate ring resonator.
    He X; Cortes-Herrera L; Opong-Mensah K; Zhang Y; Song M; Agrawal GP; Cardenas J
    Opt Lett; 2022 Nov; 47(22):5849-5852. PubMed ID: 37219118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-Q lithium niobate microring resonator with multimode waveguide.
    Wei C; Li J; Jia Q; Li D; Liu J
    Opt Lett; 2023 May; 48(9):2465-2467. PubMed ID: 37126299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral Engineering of Optical Microresonators in Anisotropic Lithium Niobate Crystal.
    Zhang K; Chen Y; Sun W; Chen Z; Feng H; Wang C
    Adv Mater; 2024 Apr; 36(17):e2308840. PubMed ID: 38181412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator.
    Luo R; Jiang H; Rogers S; Liang H; He Y; Lin Q
    Opt Express; 2017 Oct; 25(20):24531-24539. PubMed ID: 29041397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Crystalline Microresonators of High Quality Factors with a Controllable Wedge Angle on Lithium Niobate on Insulator.
    Zhang J; Fang Z; Lin J; Zhou J; Wang M; Wu R; Gao R; Cheng Y
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation.
    Wang J; Bo F; Wan S; Li W; Gao F; Li J; Zhang G; Xu J
    Opt Express; 2015 Sep; 23(18):23072-8. PubMed ID: 26368411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency Comb Generation via Cascaded Second-Order Nonlinearities in Microresonators.
    Szabados J; Puzyrev DN; Minet Y; Reis L; Buse K; Villois A; Skryabin DV; Breunig I
    Phys Rev Lett; 2020 May; 124(20):203902. PubMed ID: 32501070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.
    Sun X; Liang H; Luo R; Jiang WC; Zhang XC; Lin Q
    Opt Express; 2017 Jun; 25(12):13504-13516. PubMed ID: 28788894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics.
    Xie W; Chang L; Shu H; Norman JC; Peters JD; Wang X; Bowers JE
    Opt Express; 2020 Oct; 28(22):32894-32906. PubMed ID: 33114964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithic Strong Coupling of Topological Surface Acoustic Wave Resonators on Lithium Niobate.
    Zhang ZD; Yu SY; Xu H; Lu MH; Chen YF
    Adv Mater; 2024 May; 36(21):e2312861. PubMed ID: 38340067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation.
    Liu J; Weng H; Afridi AA; Li J; Dai J; Ma X; Long H; Zhang Y; Lu Q; Donegan JF; Guo W
    Opt Express; 2020 Jun; 28(13):19270-19280. PubMed ID: 32672207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sech-squared Pockels solitons in the microresonator parametric down-conversion.
    Skryabin DV
    Opt Express; 2021 Aug; 29(18):28521-28529. PubMed ID: 34614980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-threshold optical parametric oscillations in a whispering gallery mode resonator.
    Fürst JU; Strekalov DV; Elser D; Aiello A; Andersen UL; Marquardt Ch; Leuchs G
    Phys Rev Lett; 2010 Dec; 105(26):263904. PubMed ID: 21231666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast response of photorefraction in lithium niobate microresonators.
    Jiang H; Luo R; Liang H; Chen X; Chen Y; Lin Q
    Opt Lett; 2017 Sep; 42(17):3267-3270. PubMed ID: 28957080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kerr-induced controllable adiabatic frequency conversion in an ultrahigh Q silica toroid microcavity.
    Yoshiki W; Honda Y; Kobayashi M; Tetsumoto T; Tanabe T
    Opt Lett; 2016 Dec; 41(23):5482-5485. PubMed ID: 27906218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect.
    Pöllinger M; Rauschenbeutel A
    Opt Express; 2010 Aug; 18(17):17764-75. PubMed ID: 20721164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing 10 μK stability and residual drifts in the cross-polarized dual-mode stabilization of single-crystal ultrahigh-
    Lim J; Liang W; Savchenkov AA; Matsko AB; Maleki L; Wong CW
    Light Sci Appl; 2019; 8():1. PubMed ID: 30622704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.