These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32122084)

  • 1. Path integration (PI) method for the parameter-retrieval of aircraft wake vortex by Lidar.
    Li J; Shen C; Gao H; Chan PW; Hon KK; Wang X
    Opt Express; 2020 Feb; 28(3):4286-4306. PubMed ID: 32122084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter-retrieval of dry-air wake vortices with a scanning Doppler Lidar.
    Gao H; Li J; Chan PW; Hon KK; Wang X
    Opt Express; 2018 Jun; 26(13):16377-16392. PubMed ID: 30119470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar.
    Wu S; Zhai X; Liu B
    Opt Express; 2019 Jan; 27(2):1142-1163. PubMed ID: 30696183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Onboard wake vortex localization with a coherent 1.5 µm Doppler LIDAR for aircraft in formation flight configuration.
    Michel DT; Dolfi-Bouteyre A; Goular D; Augère B; Planchat C; Fleury D; Lombard L; Valla M; Besson C
    Opt Express; 2020 May; 28(10):14374-14385. PubMed ID: 32403478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of aircraft wake vortex parameters from data measured with a 1.5-μm coherent Doppler lidar.
    Smalikho IN; Banakh VA
    Opt Lett; 2015 Jul; 40(14):3408-11. PubMed ID: 26176481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing aircraft wake vortex position and strength using LiDAR measurements processed with artificial neural networks.
    Wartha N; Stephan A; Holzäpfel F; Rotshteyn G
    Opt Express; 2022 Apr; 30(8):13197-13225. PubMed ID: 35472939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar.
    Smalikho IN; Banakh VA; Holzäpfel F; Rahm S
    Opt Express; 2015 Sep; 23(19):A1194-207. PubMed ID: 26406749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake.
    Shariff K
    J Atmos Ocean Technol; 2016 Dec; 33(12):2615-2638. PubMed ID: 28804200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the estimation of swimming and flying forces from wake measurements.
    Dabiri JO
    J Exp Biol; 2005 Sep; 208(Pt 18):3519-32. PubMed ID: 16155224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-beam aerosol backscatter correlation lidar for wind profiling.
    Prasad NS; Mylapore AR
    Opt Eng; 2017 Mar; 56(3):. PubMed ID: 33005063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of trailing vortices in the wake of a wall-mounted rectangular cylinder.
    Sau A; Hwang RR; Sheu TW; Yang WC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056303. PubMed ID: 14682880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.
    Zhai X; Wu S; Liu B
    Opt Express; 2017 Jun; 25(12):A515-A529. PubMed ID: 28788882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Improved Wake Vortex-Based Inversion Method for Submarine Maneuvering State.
    Kong D; Yang Z; Cai L; Chai H
    Comput Intell Neurosci; 2023; 2023():5632128. PubMed ID: 36820055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of fluid motion direction based on the rotational Doppler effect of grafted perfect vortex beam.
    Lu Z; Liu M; Hu Z; Han B; Sun Y; Liao J; Wang Z; Huang S; Shi P
    Opt Express; 2023 Oct; 31(21):34232-34239. PubMed ID: 37859184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on smoke simulation with vortex shedding.
    Tao R; Ren H; Wang D; Bai X
    PLoS One; 2022; 17(6):e0269114. PubMed ID: 35709151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming.
    Tytell ED
    J Exp Biol; 2006 Apr; 209(Pt 8):1516-34. PubMed ID: 16574809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex statistics in turbulent rotating convection.
    Kunnen RP; Clercx HJ; Geurts BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036306. PubMed ID: 21230170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherent lidar airborne windshear sensor: performance evaluation.
    Targ R; Kavaya MJ; Huffaker RM; Bowles RL
    Appl Opt; 1991 May; 30(15):2013-26. PubMed ID: 20700170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong International Airport.
    Tang W; Chan PW; Haller G
    Chaos; 2010 Mar; 20(1):017502. PubMed ID: 20370292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.