These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32122312)
1. Power difference in a χ Miller ML; Roe DJ; Hu C; Bell ML BMC Med Res Methodol; 2020 Mar; 20(1):50. PubMed ID: 32122312 [TBL] [Abstract][Full Text] [Related]
2. Single time point comparisons in longitudinal randomized controlled trials: power and bias in the presence of missing data. Ashbeck EL; Bell ML BMC Med Res Methodol; 2016 Apr; 16():43. PubMed ID: 27068578 [TBL] [Abstract][Full Text] [Related]
3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
4. To adjust or not to adjust for baseline when analyzing repeated binary responses? The case of complete data when treatment comparison at study end is of interest. Jiang H; Kulkarni PM; Mallinckrodt CH; Shurzinske L; Molenberghs G; Lipkovich I Pharm Stat; 2015; 14(3):262-71. PubMed ID: 25866149 [TBL] [Abstract][Full Text] [Related]
5. Appropriate statistical methods for analysing partially nested randomised controlled trials with continuous outcomes: a simulation study. Candlish J; Teare MD; Dimairo M; Flight L; Mandefield L; Walters SJ BMC Med Res Methodol; 2018 Oct; 18(1):105. PubMed ID: 30314463 [TBL] [Abstract][Full Text] [Related]
6. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing? Mukaka M; White SA; Terlouw DJ; Mwapasa V; Kalilani-Phiri L; Faragher EB Trials; 2016 Jul; 17():341. PubMed ID: 27450066 [TBL] [Abstract][Full Text] [Related]
7. Comparing methods to estimate treatment effects on a continuous outcome in multicentre randomized controlled trials: a simulation study. Chu R; Thabane L; Ma J; Holbrook A; Pullenayegum E; Devereaux PJ BMC Med Res Methodol; 2011 Feb; 11():21. PubMed ID: 21338524 [TBL] [Abstract][Full Text] [Related]
8. Methods to adjust for multiple comparisons in the analysis and sample size calculation of randomised controlled trials with multiple primary outcomes. Vickerstaff V; Omar RZ; Ambler G BMC Med Res Methodol; 2019 Jun; 19(1):129. PubMed ID: 31226934 [TBL] [Abstract][Full Text] [Related]
9. Estimating relative risks in multicenter studies with a small number of centers - which methods to use? A simulation study. Pedroza C; Truong VTT Trials; 2017 Nov; 18(1):512. PubMed ID: 29096682 [TBL] [Abstract][Full Text] [Related]
10. Analysis of an incomplete binary outcome dichotomized from an underlying continuous variable in clinical trials. Ma C; Shen X; Qu Y; Du Y Pharm Stat; 2022 Sep; 21(5):907-918. PubMed ID: 35277928 [TBL] [Abstract][Full Text] [Related]
11. The mixed model for repeated measures for cluster randomized trials: a simulation study investigating bias and type I error with missing continuous data. Bell ML; Rabe BA Trials; 2020 Feb; 21(1):148. PubMed ID: 32033617 [TBL] [Abstract][Full Text] [Related]
12. Comparing denominator degrees of freedom approximations for the generalized linear mixed model in analyzing binary outcome in small sample cluster-randomized trials. Li P; Redden DT BMC Med Res Methodol; 2015 Apr; 15():38. PubMed ID: 25899170 [TBL] [Abstract][Full Text] [Related]
13. Trial arm outcome variance difference after dropout as an indicator of missing-not-at-random bias in randomized controlled trials. Hazewinkel AD; Tilling K; Wade KH; Palmer T Biom J; 2023 Dec; 65(8):e2200116. PubMed ID: 37727079 [TBL] [Abstract][Full Text] [Related]
14. Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis. Spineli LM; Kalyvas C BMC Med Res Methodol; 2020 Feb; 20(1):48. PubMed ID: 32111167 [TBL] [Abstract][Full Text] [Related]
15. Sample size and power calculations based on generalized linear mixed models with correlated binary outcomes. Dang Q; Mazumdar S; Houck PR Comput Methods Programs Biomed; 2008 Aug; 91(2):122-7. PubMed ID: 18462826 [TBL] [Abstract][Full Text] [Related]
16. Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study. Welch CA; Sabia S; Brunner E; Kivimäki M; Shipley MJ BMC Med Res Methodol; 2018 Aug; 18(1):89. PubMed ID: 30157752 [TBL] [Abstract][Full Text] [Related]
17. Imputation strategies for missing binary outcomes in cluster randomized trials. Ma J; Akhtar-Danesh N; Dolovich L; Thabane L; BMC Med Res Methodol; 2011 Feb; 11():18. PubMed ID: 21324148 [TBL] [Abstract][Full Text] [Related]
18. Aggregating and Analyzing Daily Drinking Data in Clinical Trials: A Comparison of Type I Errors, Power, and Bias. Hallgren KA; Atkins DC; Witkiewitz K J Stud Alcohol Drugs; 2016 Nov; 77(6):986-991. PubMed ID: 27797702 [TBL] [Abstract][Full Text] [Related]
19. Performance of analytical methods for overdispersed counts in cluster randomized trials: sample size, degree of clustering and imbalance. Durán Pacheco G; Hattendorf J; Colford JM; Mäusezahl D; Smith T Stat Med; 2009 Oct; 28(24):2989-3011. PubMed ID: 19672840 [TBL] [Abstract][Full Text] [Related]
20. Analyzing longitudinal binary data in clinical studies. Li Y; Feng D; Sui Y; Li H; Song Y; Zhan T; Cicconetti G; Jin M; Wang H; Chan I; Wang X Contemp Clin Trials; 2022 Apr; 115():106717. PubMed ID: 35240309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]