These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 32122504)
1. DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Shen Y; Tang H; Huang X; Hang R; Zhang X; Wang Y; Yao X Carbohydr Polym; 2020 May; 235():115970. PubMed ID: 32122504 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Printing Chitosan-Based Bolus Used for Radiotherapy. Lu Y; Wang F; Shi Q; Zhang J; Xiang Z; Li N; Huang X; Song J ACS Appl Bio Mater; 2021 Sep; 4(9):7094-7102. PubMed ID: 35006941 [TBL] [Abstract][Full Text] [Related]
3. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Kim SH; Yeon YK; Lee JM; Chao JR; Lee YJ; Seo YB; Sultan MT; Lee OJ; Lee JS; Yoon SI; Hong IS; Khang G; Lee SJ; Yoo JJ; Park CH Nat Commun; 2018 Apr; 9(1):1620. PubMed ID: 29693652 [TBL] [Abstract][Full Text] [Related]
4. FRESH-based 3D bioprinting of complex biological geometries using chitosan bioink. Chaurasia P; Singh R; Mahto SK Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38942010 [TBL] [Abstract][Full Text] [Related]
5. A multicrosslinked network composite hydrogel scaffold based on DLP photocuring printing for nasal cartilage repair. Jia W; Liu Z; Sun L; Cao Y; Shen Z; Li M; An Y; Zhang H; Sang S Biotechnol Bioeng; 2024 Sep; 121(9):2752-2766. PubMed ID: 38877732 [TBL] [Abstract][Full Text] [Related]
6. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Rajput M; Mondal P; Yadav P; Chatterjee K Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028 [TBL] [Abstract][Full Text] [Related]
7. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
8. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412 [TBL] [Abstract][Full Text] [Related]
9. Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins. Wu Z; Liu J; Lin J; Lu L; Tian J; Li L; Zhou C Biomacromolecules; 2022 Jan; 23(1):240-252. PubMed ID: 34931820 [TBL] [Abstract][Full Text] [Related]
10. A novel photocurable pullulan-based bioink for digital light processing 3D printing. Zhaoxuan F; Jinsong L; Dasen Z; Hui S; Jiaqi L; Wenqin B Int J Bioprint; 2023; 9(2):657. PubMed ID: 37125260 [TBL] [Abstract][Full Text] [Related]
11. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. Kim SH; Kim DY; Lim TH; Park CH Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090 [TBL] [Abstract][Full Text] [Related]
12. Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection-based 3D bioprinting. Sun Y; Yu K; Nie J; Sun M; Fu J; Wang H; He Y Biofabrication; 2021 Apr; 13(3):. PubMed ID: 32640425 [TBL] [Abstract][Full Text] [Related]
13. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552 [TBL] [Abstract][Full Text] [Related]
14. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Lu G; Tang R; Nie J; Zhu X Macromol Rapid Commun; 2024 Apr; 45(7):e2300661. PubMed ID: 38271638 [TBL] [Abstract][Full Text] [Related]
15. Droplet bioprinting of acellular and cell-laden structures at high-resolutions. Kunwar P; Aryal U; Poudel A; Fougnier D; Geffert ZJ; Xie R; Li Z; Soman P Biofabrication; 2024 May; 16(3):. PubMed ID: 38749419 [TBL] [Abstract][Full Text] [Related]
16. Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization. Duong VT; Lin CC Macromol Biosci; 2023 Dec; 23(12):e2300213. PubMed ID: 37536347 [TBL] [Abstract][Full Text] [Related]
17. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
18. Modified mannan for 3D bioprinting: a potential novel bioink for tissue engineering. Huang Y; Zhou Z; Hu Y; He N; Li J; Han X; Zhao G; Liu H Biomed Mater; 2021 Aug; 16(5):. PubMed ID: 34348252 [TBL] [Abstract][Full Text] [Related]
19. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
20. Development of photo-crosslinkable platelet lysate-based hydrogels for 3D printing and tissue engineering. Min SJ; Lee JS; Nah H; Kim SH; Moon HJ; Reis RL; Kwon IK; Heo DN Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34330124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]