These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32123053)

  • 1. Pulling the Hood off Genetic Susceptibility to Hypertensive Renal Disease.
    Dhande IS; Doris PA
    J Am Soc Nephrol; 2020 Apr; 31(4):667-668. PubMed ID: 32123053
    [No Abstract]   [Full Text] [Related]  

  • 2. A Mutation in
    Fan F; Geurts AM; Pabbidi MR; Ge Y; Zhang C; Wang S; Liu Y; Gao W; Guo Y; Li L; He X; Lv W; Muroya Y; Hirata T; Prokop J; Booz GW; Jacob HJ; Roman RJ
    J Am Soc Nephrol; 2020 Apr; 31(4):687-700. PubMed ID: 32029431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic QTL interactions between Rf-1 and Rf-3 increase renal damage susceptibility in double congenic rats.
    Van Dijk SJ; Specht PA; Lazar J; Jacob HJ; Provoost AP
    Kidney Int; 2006 Apr; 69(8):1369-76. PubMed ID: 16541022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal damage susceptibility and autoregulation in RF-1 and RF-5 congenic rats.
    Van Dijk SJ; Specht PA; Lazar J; Jacob HJ; Provoost AP
    Nephron Exp Nephrol; 2005; 101(2):e59-66. PubMed ID: 15976509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between Rf-1 and Rf-4 quantitative trait loci increases susceptibility to renal damage in double congenic rats.
    Van Dijk SJ; Specht PA; Lutz MM; Lazar J; Jacob HJ; Provoost AP
    Kidney Int; 2005 Dec; 68(6):2462-72. PubMed ID: 16316323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Gene mutation and polymorphism as risk factors in the development of hypertensive organ damage].
    Okura T
    Nihon Rinsho; 2004 Mar; 62 Suppl 3():92-7. PubMed ID: 15171348
    [No Abstract]   [Full Text] [Related]  

  • 7. X-linked locus associated with hypertensive renal disease susceptibility in Dahl rats.
    Herrera VL; Traverse S; Lopez LV; Ruiz-Opazo N
    J Hypertens; 2003 Jan; 21(1):67-71. PubMed ID: 12544437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All for one and one for all: introduction to a coordinated analysis of the Gly-460-Trp alpha-adducin polymorphism.
    Boerwinkle E;
    Am J Hypertens; 2000 Jun; 13(6 Pt 1):734-5. PubMed ID: 10912761
    [No Abstract]   [Full Text] [Related]  

  • 9. Resetting of renal blood autoregulation during acute blood pressure reduction in hypertensive rats.
    Iversen BM; Kvam FI; Matre K; Ofstad J
    Am J Physiol; 1998 Aug; 275(2):R343-9. PubMed ID: 9688667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-varying properties of renal autoregulatory mechanisms.
    Zou R; Cupples WA; Yip KP; Holstein-Rathlou NH; Chon KH
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1112-20. PubMed ID: 12374335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effects of trifluoperazine and chlorpromazine, calmodulin inhibitor, on autoregulation of renal blood flow.
    Ogawa N; Yokota S; Ono H
    Jpn J Pharmacol; 1987 Mar; 43(3):331-4. PubMed ID: 2438442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic predisposition to hypertension and microvascular injury in the remnant kidney model.
    Bidani AK; Griffin KA; Plott W; Schwartz MM
    J Lab Clin Med; 1993 Sep; 122(3):284-91. PubMed ID: 8409704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of an interaction between the Rf-1 and Rf-5 QTLs influencing susceptibility to renal damage in rats.
    van Dijk SJ; Specht PA; Lazar J; Jacob HJ; Provoost AP
    Nephron Exp Nephrol; 2006; 104(3):e96-e102. PubMed ID: 16837819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.
    A Mitrou NG; Cupples WA
    Curr Vasc Pharmacol; 2014; 12(6):801-9. PubMed ID: 24066933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association and linkage analysis of alpha-adducin polymorphism: is the glass half full or half empty?
    Bianchi G; Cusi D
    Am J Hypertens; 2000 Jun; 13(6 Pt 1):739-43. PubMed ID: 10912763
    [No Abstract]   [Full Text] [Related]  

  • 16. Impairment of pressure-natriuresis and renal autoregulation in ANG II-infused hypertensive rats.
    Wang CT; Chin SY; Navar LG
    Am J Physiol Renal Physiol; 2000 Aug; 279(2):F319-25. PubMed ID: 10919852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blocking the salt-inducible kinase 1 network prevents the increases in cell sodium transport caused by a hypertension-linked mutation in human alpha-adducin.
    Stenström K; Takemori H; Bianchi G; Katz AI; Bertorello AM
    J Hypertens; 2009 Dec; 27(12):2452-7. PubMed ID: 19657284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic susceptibility to renal injury in hypertension.
    Bidani AK; Griffin KA; Churchill PC; Churchill MC; St Lezin E; Kurtz TW
    Exp Nephrol; 2001; 9(6):360-5. PubMed ID: 11701994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracorporeal shock wave treatment raises blood pressure in borderline hypertensive rats.
    Weber C; Glück U; Staehler G; Rettig R
    J Urol; 1995 Jul; 154(1):232-6. PubMed ID: 7776436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.