BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32123105)

  • 21. Probing the stability of the SpCas9-DNA complex after cleavage.
    Aldag P; Welzel F; Jakob L; Schmidbauer A; Rutkauskas M; Fettes F; Grohmann D; Seidel R
    Nucleic Acids Res; 2021 Dec; 49(21):12411-12421. PubMed ID: 34792162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of duplex DNA destabilization by RNA-guided Cas9 nuclease during target interrogation.
    Mekler V; Minakhin L; Severinov K
    Proc Natl Acad Sci U S A; 2017 May; 114(21):5443-5448. PubMed ID: 28484024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes.
    Szczelkun MD; Tikhomirova MS; Sinkunas T; Gasiunas G; Karvelis T; Pschera P; Siksnys V; Seidel R
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9798-803. PubMed ID: 24912165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. R-loop formation and conformational activation mechanisms of Cas9.
    Pacesa M; Loeff L; Querques I; Muckenfuss LM; Sawicka M; Jinek M
    Nature; 2022 Sep; 609(7925):191-196. PubMed ID: 36002571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a.
    Tambe A; East-Seletsky A; Knott GJ; Doudna JA; O'Connell MR
    Cell Rep; 2018 Jul; 24(4):1025-1036. PubMed ID: 30044970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-Cas9 Structures and Mechanisms.
    Jiang F; Doudna JA
    Annu Rev Biophys; 2017 May; 46():505-529. PubMed ID: 28375731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks.
    Cofsky JC; Karandur D; Huang CJ; Witte IP; Kuriyan J; Doudna JA
    Elife; 2020 Jun; 9():. PubMed ID: 32519675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability: from physical mechanism to off-target assessment.
    Xu X; Duan D; Chen SJ
    Sci Rep; 2017 Mar; 7(1):143. PubMed ID: 28273945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
    Singh D; Mallon J; Poddar A; Wang Y; Tippana R; Yang O; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5444-5449. PubMed ID: 29735714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
    Palermo G; Ricci CG; Fernando A; Basak R; Jinek M; Rivalta I; Batista VS; McCammon JA
    J Am Chem Soc; 2017 Nov; 139(45):16028-16031. PubMed ID: 28764328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage.
    Stella S; Alcón P; Montoya G
    Nature; 2017 Jun; 546(7659):559-563. PubMed ID: 28562584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance.
    Babu K; Amrani N; Jiang W; Yogesha SD; Nguyen R; Qin PZ; Rajan R
    Biochemistry; 2019 Apr; 58(14):1905-1917. PubMed ID: 30916546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9.
    Dagdas YS; Chen JS; Sternberg SH; Doudna JA; Yildiz A
    Sci Adv; 2017 Aug; 3(8):eaao0027. PubMed ID: 28808686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis.
    Singh D; Wang Y; Mallon J; Yang O; Fei J; Poddar A; Ceylan D; Bailey S; Ha T
    Nat Struct Mol Biol; 2018 Apr; 25(4):347-354. PubMed ID: 29622787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila.
    Gratz SJ; Ukken FP; Rubinstein CD; Thiede G; Donohue LK; Cummings AM; O'Connor-Giles KM
    Genetics; 2014 Apr; 196(4):961-71. PubMed ID: 24478335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of target specificity of CRISPR-Cas12a by using a chimeric DNA-RNA guide.
    Kim H; Lee WJ; Oh Y; Kang SH; Hur JK; Lee H; Song W; Lim KS; Park YH; Song BS; Jin YB; Jun BH; Jung C; Lee DS; Kim SU; Lee SH
    Nucleic Acids Res; 2020 Sep; 48(15):8601-8616. PubMed ID: 32687187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells.
    Donohoue PD; Pacesa M; Lau E; Vidal B; Irby MJ; Nyer DB; Rotstein T; Banh L; Toh MS; Gibson J; Kohrs B; Baek K; Owen ALG; Slorach EM; van Overbeek M; Fuller CK; May AP; Jinek M; Cameron P
    Mol Cell; 2021 Sep; 81(17):3637-3649.e5. PubMed ID: 34478654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A G-quadruplex motif at the 3' end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency.
    Nahar S; Sehgal P; Azhar M; Rai M; Singh A; Sivasubbu S; Chakraborty D; Maiti S
    Chem Commun (Camb); 2018 Mar; 54(19):2377-2380. PubMed ID: 29450416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.