BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32123116)

  • 1.
    Angara K; Pai EL; Bilinovich SM; Stafford AM; Nguyen JT; Li KX; Paul A; Rubenstein JL; Vogt D
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6189-6195. PubMed ID: 32123116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons.
    Elbert A; Vogt D; Watson A; Levy M; Jiang Y; Brûlé E; Rowland ME; Rubenstein J; Bérubé NG
    J Neurosci; 2019 Jan; 39(1):177-192. PubMed ID: 30377227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells.
    Tyson JA; Goldberg EM; Maroof AM; Xu Q; Petros TJ; Anderson SA
    Development; 2015 Apr; 142(7):1267-78. PubMed ID: 25804737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NKX2.1 specifies cortical interneuron fate by activating Lhx6.
    Du T; Xu Q; Ocbina PJ; Anderson SA
    Development; 2008 Apr; 135(8):1559-67. PubMed ID: 18339674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons.
    Denaxa M; Kalaitzidou M; Garefalaki A; Achimastou A; Lasrado R; Maes T; Pachnis V
    Cell Rep; 2012 Nov; 2(5):1351-62. PubMed ID: 23142661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of MGE-derived cortical interneurons: An Lhx6 tale.
    Christodoulou O; Maragkos I; Antonakou V; Denaxa M
    Int J Dev Biol; 2022; 66(1-2-3):43-49. PubMed ID: 34881792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development.
    Liu Z; Zhang Z; Lindtner S; Li Z; Xu Z; Wei S; Liang Q; Wen Y; Tao G; You Y; Chen B; Wang Y; Rubenstein JL; Yang Z
    Cereb Cortex; 2019 Jun; 29(6):2653-2667. PubMed ID: 29878134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position.
    Vogt D; Hunt RF; Mandal S; Sandberg M; Silberberg SN; Nagasawa T; Yang Z; Baraban SC; Rubenstein JL
    Neuron; 2014 Apr; 82(2):350-64. PubMed ID: 24742460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical inhibitory neuron disturbances in schizophrenia: role of the ontogenetic transcription factor Lhx6.
    Volk DW; Edelson JR; Lewis DA
    Schizophr Bull; 2014 Sep; 40(5):1053-61. PubMed ID: 24837792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tsc1 represses parvalbumin expression and fast-spiking properties in somatostatin lineage cortical interneurons.
    Malik R; Pai EL; Rubin AN; Stafford AM; Angara K; Minasi P; Rubenstein JL; Sohal VS; Vogt D
    Nat Commun; 2019 Nov; 10(1):4994. PubMed ID: 31676823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of human somatostatin and parvalbumin neurons by expressing a single transcription factor LIM homeobox 6.
    Yuan F; Chen X; Fang KH; Wang Y; Lin M; Xu SB; Huo HQ; Xu M; Ma L; Chen Y; He S; Liu Y
    Elife; 2018 Sep; 7():. PubMed ID: 30251953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons.
    Göngrich C; Krapacher FA; Munguba H; Fernández-Suárez D; Andersson A; Hjerling-Leffler J; Ibáñez CF
    J Cell Biol; 2020 Jan; 219(1):. PubMed ID: 31676717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERK inhibition rescues defects in fate specification of Nf1-deficient neural progenitors and brain abnormalities.
    Wang Y; Kim E; Wang X; Novitch BG; Yoshikawa K; Chang LS; Zhu Y
    Cell; 2012 Aug; 150(4):816-30. PubMed ID: 22901811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity.
    Larimer P; Spatazza J; Espinosa JS; Tang Y; Kaneko M; Hasenstaub AR; Stryker MP; Alvarez-Buylla A
    Cell Rep; 2016 Aug; 16(5):1391-1404. PubMed ID: 27425623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemokine receptors and cortical interneuron dysfunction in schizophrenia.
    Volk DW; Chitrapu A; Edelson JR; Lewis DA
    Schizophr Res; 2015 Sep; 167(1-3):12-7. PubMed ID: 25464914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse Cntnap2 and Human CNTNAP2 ASD Alleles Cell Autonomously Regulate PV+ Cortical Interneurons.
    Vogt D; Cho KKA; Shelton SM; Paul A; Huang ZJ; Sohal VS; Rubenstein JLR
    Cereb Cortex; 2018 Nov; 28(11):3868-3879. PubMed ID: 29028946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MTG8 interacts with LHX6 to specify cortical interneuron subtype identity.
    Asgarian Z; Oliveira MG; Stryjewska A; Maragkos I; Rubin AN; Magno L; Pachnis V; Ghorbani M; Hiebert SW; Denaxa M; Kessaris N
    Nat Commun; 2022 Sep; 13(1):5217. PubMed ID: 36064547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regionalized loss of parvalbumin interneurons in the cerebral cortex of mice with deficits in GFRalpha1 signaling.
    Canty AJ; Dietze J; Harvey M; Enomoto H; Milbrandt J; Ibáñez CF
    J Neurosci; 2009 Aug; 29(34):10695-705. PubMed ID: 19710321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-canonical Wnt Signaling through Ryk Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons.
    McKenzie MG; Cobbs LV; Dummer PD; Petros TJ; Halford MM; Stacker SA; Zou Y; Fishell GJ; Au E
    Neuron; 2019 Sep; 103(5):853-864.e4. PubMed ID: 31257105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence.
    Inan M; Welagen J; Anderson SA
    Cereb Cortex; 2012 Apr; 22(4):820-7. PubMed ID: 21693785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.