BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 32123275)

  • 1. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes.
    Romero Victorica M; Soria MA; Batista-García RA; Ceja-Navarro JA; Vikram S; Ortiz M; Ontañon O; Ghio S; Martínez-Ávila L; Quintero García OJ; Etcheverry C; Campos E; Cowan D; Arneodo J; Talia PM
    Sci Rep; 2020 Mar; 10(1):3864. PubMed ID: 32123275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodularity of a GH10 Xylanase Found in the Termite Gut Metagenome.
    Wu H; Ioannou E; Henrissat B; Montanier CY; Bozonnet S; O'Donohue MJ; Dumon C
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33187992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungiculture in Termites Is Associated with a Mycolytic Gut Bacterial Community.
    Hu H; da Costa RR; Pilgaard B; Schiøtt M; Lange L; Poulsen M
    mSphere; 2019 May; 4(3):. PubMed ID: 31092601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite.
    Warnecke F; Luginbühl P; Ivanova N; Ghassemian M; Richardson TH; Stege JT; Cayouette M; McHardy AC; Djordjevic G; Aboushadi N; Sorek R; Tringe SG; Podar M; Martin HG; Kunin V; Dalevi D; Madejska J; Kirton E; Platt D; Szeto E; Salamov A; Barry K; Mikhailova N; Kyrpides NC; Matson EG; Ottesen EA; Zhang X; Hernández M; Murillo C; Acosta LG; Rigoutsos I; Tamayo G; Green BD; Chang C; Rubin EM; Mathur EJ; Robertson DE; Hugenholtz P; Leadbetter JR
    Nature; 2007 Nov; 450(7169):560-5. PubMed ID: 18033299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites.
    Tokuda G; Mikaelyan A; Fukui C; Matsuura Y; Watanabe H; Fujishima M; Brune A
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):E11996-E12004. PubMed ID: 30504145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- and soil-feeding higher termites.
    Marynowska M; Goux X; Sillam-Dussès D; Rouland-Lefèvre C; Halder R; Wilmes P; Gawron P; Roisin Y; Delfosse P; Calusinska M
    Microbiome; 2020 Jun; 8(1):96. PubMed ID: 32576253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites.
    He S; Ivanova N; Kirton E; Allgaier M; Bergin C; Scheffrahn RH; Kyrpides NC; Warnecke F; Tringe SG; Hugenholtz P
    PLoS One; 2013; 8(4):e61126. PubMed ID: 23593407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomic Analysis of the Whole Gut Microbiota in Brazilian Termitidae Termites Cornitermes cumulans, Cyrilliotermes strictinasus, Syntermes dirus, Nasutitermes jaraguae, Nasutitermes aquilinus, Grigiotermes bequaerti, and Orthognathotermes mirim.
    Grieco MB; Lopes FAC; Oliveira LS; Tschoeke DA; Popov CC; Thompson CC; Gonçalves LC; Constantino R; Martins OB; Kruger RH; de Souza W; Thompson FL
    Curr Microbiol; 2019 Jun; 76(6):687-697. PubMed ID: 30953134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Gut Microbiomes of Four Species Representing the Higher and the Lower Termites.
    Su L; Yang L; Huang S; Su X; Li Y; Wang F; Wang E; Kang N; Xu J; Song A
    J Insect Sci; 2016; 16(1):. PubMed ID: 27638955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam.
    Do TH; Nguyen TT; Nguyen TN; Le QG; Nguyen C; Kimura K; Truong NH
    J Biosci Bioeng; 2014 Dec; 118(6):665-71. PubMed ID: 24928651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes.
    Nimchua T; Thongaram T; Uengwetwanit T; Pongpattanakitshote S; Eurwilaichitr L
    J Microbiol Biotechnol; 2012 Apr; 22(4):462-9. PubMed ID: 22534292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite.
    Liu N; Li H; Chevrette MG; Zhang L; Cao L; Zhou H; Zhou X; Zhou Z; Pope PB; Currie CR; Huang Y; Wang Q
    ISME J; 2019 Jan; 13(1):104-117. PubMed ID: 30116044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial species metabolic interaction network for deciphering the lignocellulolytic system in fungal cultivating termite gut microbiota.
    Kundu P; Mondal S; Ghosh A
    Biosystems; 2022 Nov; 221():104763. PubMed ID: 36029916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite Nasutitermes takasagoensis displaying prominent catalytic activity.
    Kitamoto M; Tokuda G; Watanabe H; Arioka M
    Carbohydr Res; 2019 Feb; 474():1-7. PubMed ID: 30665024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity structure of the microbial communities in the guts of four neotropical termite species.
    Vikram S; Arneodo JD; Calcagno J; Ortiz M; Mon ML; Etcheverry C; Cowan DA; Talia P
    PeerJ; 2021; 9():e10959. PubMed ID: 33868801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors.
    Auer L; Lazuka A; Sillam-Dussès D; Miambi E; O'Donohue M; Hernandez-Raquet G
    Front Microbiol; 2017; 8():2623. PubMed ID: 29312279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes.
    Calusinska M; Marynowska M; Bertucci M; Untereiner B; Klimek D; Goux X; Sillam-Dussès D; Gawron P; Halder R; Wilmes P; Ferrer P; Gerin P; Roisin Y; Delfosse P
    Commun Biol; 2020 Jun; 3(1):275. PubMed ID: 32483294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation.
    Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z
    BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomic analysis of the microbiome [corrected] of herbivorous insects reveals eco-environmental adaptations: biotechnology applications.
    Shi W; Xie S; Chen X; Sun S; Zhou X; Liu L; Gao P; Kyrpides NC; No EG; Yuan JS
    PLoS Genet; 2013; 9(1):e1003131. PubMed ID: 23326236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis.
    Miyata R; Noda N; Tamaki H; Kinjyo K; Aoyagi H; Uchiyama H; Tanaka H
    Biosci Biotechnol Biochem; 2007 May; 71(5):1244-51. PubMed ID: 17485852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.