These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
501 related articles for article (PubMed ID: 32123335)
1. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Artegiani B; Hendriks D; Beumer J; Kok R; Zheng X; Joore I; Chuva de Sousa Lopes S; van Zon J; Tans S; Clevers H Nat Cell Biol; 2020 Mar; 22(3):321-331. PubMed ID: 32123335 [TBL] [Abstract][Full Text] [Related]
2. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver. Hendriks D; Artegiani B; Hu H; Chuva de Sousa Lopes S; Clevers H Nat Protoc; 2021 Jan; 16(1):182-217. PubMed ID: 33247284 [TBL] [Abstract][Full Text] [Related]
3. CRISPR Knock-Ins in Organoids to Track Tumor Cell Subpopulations. Cortina C; Cañellas-Socias A Methods Mol Biol; 2024; 2811():137-154. PubMed ID: 39037655 [TBL] [Abstract][Full Text] [Related]
4. Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach. Seleit A; Aulehla A; Paix A Elife; 2021 Dec; 10():. PubMed ID: 34870593 [TBL] [Abstract][Full Text] [Related]
5. [Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals]. Li GL; Yang SX; Wu ZF; Zhang XW Yi Chuan; 2020 Jul; 42(7):641-656. PubMed ID: 32694104 [TBL] [Abstract][Full Text] [Related]
6. Efficient and error-free fluorescent gene tagging in human organoids without double-strand DNA cleavage. Bollen Y; Hageman JH; van Leenen P; Derks LLM; Ponsioen B; Buissant des Amorie JR; Verlaan-Klink I; van den Bos M; Terstappen LWMM; van Boxtel R; Snippert HJG PLoS Biol; 2022 Jan; 20(1):e3001527. PubMed ID: 35089911 [TBL] [Abstract][Full Text] [Related]
7. A protocol for efficient CRISPR-Cas9-mediated knock-in in colorectal cancer patient-derived organoids. Okamoto T; Natsume Y; Yamanaka H; Fukuda M; Yao R STAR Protoc; 2021 Dec; 2(4):100780. PubMed ID: 34585151 [TBL] [Abstract][Full Text] [Related]
8. Fast, precise and cloning-free knock-in of reporter sequences in vivo with high efficiency. Zhang Y; Marshall-Phelps K; de Almeida RG Development; 2023 Jun; 150(12):. PubMed ID: 37309812 [TBL] [Abstract][Full Text] [Related]
9. Short-Homology-Mediated CRISPR/Cas9-Based Method for Genome Editing in Fission Yeast. Hayashi A; Tanaka K G3 (Bethesda); 2019 Apr; 9(4):1153-1163. PubMed ID: 30755408 [TBL] [Abstract][Full Text] [Related]
10. Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Pinder J; Salsman J; Dellaire G Nucleic Acids Res; 2015 Oct; 43(19):9379-92. PubMed ID: 26429972 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Boel A; De Saffel H; Steyaert W; Callewaert B; De Paepe A; Coucke PJ; Willaert A Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355591 [TBL] [Abstract][Full Text] [Related]
12. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system. Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459 [TBL] [Abstract][Full Text] [Related]
13. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish. Kawahara A; Hisano Y; Ota S; Taimatsu K Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373 [TBL] [Abstract][Full Text] [Related]
14. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Li G; Zhang X; Zhong C; Mo J; Quan R; Yang J; Liu D; Li Z; Yang H; Wu Z Sci Rep; 2017 Aug; 7(1):8943. PubMed ID: 28827551 [TBL] [Abstract][Full Text] [Related]
15. Comparison and optimization of different CRISPR/Cas9 donor-adapting systems for gene editing. Ma BX; Yang S; Lyu M; Wang YR; Chang LY; Han YF; Wang JG; Guo Y; Xu K Yi Chuan; 2024 Jun; 46(6):466-477. PubMed ID: 38886150 [TBL] [Abstract][Full Text] [Related]
16. Efficient SSA-mediated precise genome editing using CRISPR/Cas9. Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411 [TBL] [Abstract][Full Text] [Related]
17. [Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies]. Wang J; Huang J; Xu R Yi Chuan; 2019 May; 41(5):422-429. PubMed ID: 31106778 [TBL] [Abstract][Full Text] [Related]
18. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Hisano Y; Sakuma T; Nakade S; Ohga R; Ota S; Okamoto H; Yamamoto T; Kawahara A Sci Rep; 2015 Mar; 5():8841. PubMed ID: 25740433 [TBL] [Abstract][Full Text] [Related]
19. Generation of a zebrafish knock-in line expressing MYC-tagged Sox11a using CRISPR/Cas9 genome editing. Krueger LA; Morris AC Biochem Biophys Res Commun; 2022 Jun; 608():8-13. PubMed ID: 35378361 [TBL] [Abstract][Full Text] [Related]
20. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]