BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 32123729)

  • 1. Size-Tunable Strategies for a Tumor Targeted Drug Delivery System.
    Yu W; Liu R; Zhou Y; Gao H
    ACS Cent Sci; 2020 Feb; 6(2):100-116. PubMed ID: 32123729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Size-Changeable Nanoparticles for Enhanced Tumor Accumulation and Deep Penetration.
    Yu W; Hu C; Gao H
    ACS Appl Bio Mater; 2020 Sep; 3(9):5455-5462. PubMed ID: 35021784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid pH-responsive self-disintegrating nanoassemblies balance tumor accumulation and penetration for enhanced anti-breast cancer therapy.
    Li J; Wang Y; Xu C; Yu Q; Wang X; Xie H; Tian L; Qiu Y; Guo R; Lu Z; Li M; He Q
    Acta Biomater; 2021 Oct; 134():546-558. PubMed ID: 33882357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of disintegrable nanoassemblies to release multiple small-sized nanoparticles.
    Zhu D; Yan H; Zhou Y; Nack LM; Liu J; Parak WJ
    Adv Drug Deliv Rev; 2023 Jun; 197():114854. PubMed ID: 37119865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycoprotein Ib-regulated micro platelet ghost for biosafe distribution and photothermal oncotherapy.
    Zou J; He J; Wang X; Wang Y; Wu C; Shi M; Jiang H; Wu Z; Liu J; Zhang W
    J Control Release; 2022 Nov; 351():341-360. PubMed ID: 36152806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-Microenvironment- Responsive Size-Shrinkable Drug-Delivery Nanosystems for Deepened Penetration Into Tumors.
    Cheng X; Li H; Ge X; Chen L; Liu Y; Mao W; Zhao B; Yuan WE
    Front Mol Biosci; 2020; 7():576420. PubMed ID: 33330618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade.
    Attama AA; Nnamani PO; Onokala OB; Ugwu AA; Onugwu AL
    Front Pharmacol; 2022; 13():874510. PubMed ID: 36160424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications.
    Li L; Xing H; Zhang J; Lu Y
    Acc Chem Res; 2019 Sep; 52(9):2415-2426. PubMed ID: 31411853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme dual-responsive targeted and controlled drug delivery and real-time bioimaging.
    Wang Y; Cui Y; Zhao Y; He B; Shi X; Di D; Zhang Q; Wang S
    Eur J Pharm Biopharm; 2017 Aug; 117():105-115. PubMed ID: 28363599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications.
    Wu W; Luo L; Wang Y; Wu Q; Dai HB; Li JS; Durkan C; Wang N; Wang GX
    Theranostics; 2018; 8(11):3038-3058. PubMed ID: 29896301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications.
    Xu K; Weng J; Li J; Chen X
    Macromol Biosci; 2023 Sep; 23(9):e2300014. PubMed ID: 37055877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy.
    Zhou Y; Li Q; Wu Y; Li X; Zhou Y; Wang Z; Liang H; Ding F; Hong S; Steinmetz NF; Cai H
    ACS Nano; 2023 May; 17(9):8004-8025. PubMed ID: 37079378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-Responsive Design of Metal-Organic Frameworks for Cancer Theranostics: Current Challenges and Future Perspective.
    Pantwalawalkar J; Mhettar P; Nangare S; Mali R; Ghule A; Patil P; Mohite S; More H; Jadhav N
    ACS Biomater Sci Eng; 2023 Aug; 9(8):4497-4526. PubMed ID: 37526605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Active Delivery of Nanodrugs In Vivo via Remote Optical Manipulation.
    Liu X; Wu S; Wu H; Zhang T; Qin H; Lin Y; Li B; Jiang X; Zheng X
    Small Methods; 2024 Jan; 8(1):e2301112. PubMed ID: 37880897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrin-mediated active tumor targeting and tumor microenvironment response dendrimer-gelatin nanoparticles for drug delivery and tumor treatment.
    Hu G; Zhang H; Zhang L; Ruan S; He Q; Gao H
    Int J Pharm; 2015 Dec; 496(2):1057-68. PubMed ID: 26598487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-Controllable DNA Origami-Stacked Gold Nanoparticles for Deep Tumor-Penetrating Therapy.
    Gu D; Qiao Y; Fu H; Zhao H; Yue X; Wang S; Yin Y; Xi R; Fu X; Zhao X; Meng M
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):38048-38055. PubMed ID: 35950900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.
    Cheng R; Meng F; Deng C; Klok HA; Zhong Z
    Biomaterials; 2013 May; 34(14):3647-57. PubMed ID: 23415642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.