These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 32123855)
1. Changes in the R-region interactions depend on phosphorylation and contribute to PKA and PKC regulation of the cystic fibrosis transmembrane conductance regulator chloride channel. Poroca DR; Amer N; Li A; Hanrahan JW; Chappe VM FASEB Bioadv; 2020 Jan; 2(1):33-48. PubMed ID: 32123855 [TBL] [Abstract][Full Text] [Related]
2. Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. Chappe V; Hinkson DA; Zhu T; Chang XB; Riordan JR; Hanrahan JW J Physiol; 2003 Apr; 548(Pt 1):39-52. PubMed ID: 12588899 [TBL] [Abstract][Full Text] [Related]
3. Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator. Chappe V; Hinkson DA; Howell LD; Evagelidis A; Liao J; Chang XB; Riordan JR; Hanrahan JW Proc Natl Acad Sci U S A; 2004 Jan; 101(1):390-5. PubMed ID: 14695900 [TBL] [Abstract][Full Text] [Related]
4. PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR. Seavilleklein G; Amer N; Evagelidis A; Chappe F; Irvine T; Hanrahan JW; Chappe V Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1366-75. PubMed ID: 18799655 [TBL] [Abstract][Full Text] [Related]
5. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C. Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895 [TBL] [Abstract][Full Text] [Related]
6. Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. Jia Y; Mathews CJ; Hanrahan JW J Biol Chem; 1997 Feb; 272(8):4978-84. PubMed ID: 9030559 [TBL] [Abstract][Full Text] [Related]
7. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. Csanády L; Seto-Young D; Chan KW; Cenciarelli C; Angel BB; Qin J; McLachlin DT; Krutchinsky AN; Chait BT; Nairn AC; Gadsby DC J Gen Physiol; 2005 Feb; 125(2):171-86. PubMed ID: 15657296 [TBL] [Abstract][Full Text] [Related]
8. Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2. Chen Y; Button B; Altenberg GA; Reuss L Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1436-44. PubMed ID: 15282191 [TBL] [Abstract][Full Text] [Related]
9. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
10. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
11. AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR. King JD; Fitch AC; Lee JK; McCane JE; Mak DO; Foskett JK; Hallows KR Am J Physiol Cell Physiol; 2009 Jul; 297(1):C94-101. PubMed ID: 19419994 [TBL] [Abstract][Full Text] [Related]
12. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022 [TBL] [Abstract][Full Text] [Related]
13. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. Rich DP; Berger HA; Cheng SH; Travis SM; Saxena M; Smith AE; Welsh MJ J Biol Chem; 1993 Sep; 268(27):20259-67. PubMed ID: 7690753 [TBL] [Abstract][Full Text] [Related]
14. PKC-mediated stimulation of amphibian CFTR depends on a single phosphorylation consensus site. insertion of this site confers PKC sensitivity to human CFTR. Button B; Reuss L; Altenberg GA J Gen Physiol; 2001 May; 117(5):457-68. PubMed ID: 11331356 [TBL] [Abstract][Full Text] [Related]
15. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. Chen JH J Biol Chem; 2020 Apr; 295(14):4577-4590. PubMed ID: 32102849 [TBL] [Abstract][Full Text] [Related]
16. Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR). Billet A; Luo Y; Balghi H; Hanrahan JW J Biol Chem; 2013 Jul; 288(30):21815-23. PubMed ID: 23760269 [TBL] [Abstract][Full Text] [Related]
17. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels. Wang F; Zeltwanger S; Hu S; Hwang TC J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148 [TBL] [Abstract][Full Text] [Related]
18. Dual regulation of cardiac Na+-K+ pumps and CFTR Cl- channels by protein kinases A and C. Erlenkamp S; Glitsch HG; Kockskämper J Pflugers Arch; 2002 May; 444(1-2):251-62. PubMed ID: 11976939 [TBL] [Abstract][Full Text] [Related]
19. Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. Chang XB; Tabcharani JA; Hou YX; Jensen TJ; Kartner N; Alon N; Hanrahan JW; Riordan JR J Biol Chem; 1993 May; 268(15):11304-11. PubMed ID: 7684377 [TBL] [Abstract][Full Text] [Related]
20. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]