These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
673 related articles for article (PubMed ID: 32124067)
1. Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA walker and hybridization chain reaction amplification. Qu X; Wang J; Zhang R; Zhao Y; Li S; Wang Y; Liu S; Huang J; Yu J Mikrochim Acta; 2020 Mar; 187(3):193. PubMed ID: 32124067 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic electrophoretic non-enzymatic kanamycin assay making use of a stirring bar functionalized with gold-labeled aptamer, of a fluorescent DNA probe, and of signal amplification via hybridization chain reaction. Zhang K; Gan N; Hu F; Chen X; Li T; Cao J Mikrochim Acta; 2018 Feb; 185(3):181. PubMed ID: 29594631 [TBL] [Abstract][Full Text] [Related]
3. A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles. Zhang K; Cao J; Wu Y; Hu F; Li T; Wang Y; Gan N Mikrochim Acta; 2019 Jan; 186(2):120. PubMed ID: 30666478 [TBL] [Abstract][Full Text] [Related]
4. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481 [TBL] [Abstract][Full Text] [Related]
5. Colorimetric aggregation assay for kanamycin using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification. Xu C; Ying Y; Ping J Mikrochim Acta; 2019 Jun; 186(7):448. PubMed ID: 31197488 [TBL] [Abstract][Full Text] [Related]
6. A microfluidic chip based ratiometric aptasensor for antibiotic detection in foods using stir bar assisted sorptive extraction and rolling circle amplification. He L; Shen Z; Cao Y; Li T; Wu D; Dong Y; Gan N Analyst; 2019 Apr; 144(8):2755-2764. PubMed ID: 30869681 [TBL] [Abstract][Full Text] [Related]
7. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Wang Y; Gan N; Zhou Y; Li T; Hu F; Cao Y; Chen Y Biosens Bioelectron; 2017 Nov; 97():100-106. PubMed ID: 28578167 [TBL] [Abstract][Full Text] [Related]
8. Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk. Liu M; Yang Z; Li B; Du J Food Chem; 2021 Mar; 339():128059. PubMed ID: 33152864 [TBL] [Abstract][Full Text] [Related]
9. An All-in-One Aptasensor Integrating Enzyme Powered Three-Dimensional DNA Machine for Antibiotic Detection. Ye T; Zhang Z; Yuan M; Cao H; Yin F; Wu X; Xu F J Agric Food Chem; 2020 Mar; 68(9):2826-2831. PubMed ID: 32045247 [TBL] [Abstract][Full Text] [Related]
10. Efficient strand displacement amplification via stepwise movement of a bipedal DNA walker on an electrode surface for ultrasensitive detection of antibiotics. Zhang R; Zhang J; Qu X; Li S; Zhao Y; Liu S; Wang Y; Huang J; Yu J Analyst; 2020 Apr; 145(8):2975-2981. PubMed ID: 32118243 [TBL] [Abstract][Full Text] [Related]
11. DNAzyme-powered DNA walking machine for ultrasensitive fluorescence aptasensing of kanamycin. Yang Z; Liu M; Li B Mikrochim Acta; 2020 Nov; 187(12):678. PubMed ID: 33247409 [TBL] [Abstract][Full Text] [Related]
12. Proximity-enabled bidirectional enzymatic repairing amplification for ultrasensitive fluorescence sensing of adenosine triphosphate. Li S; Liu S; Wang J; Zhao Y; Zhang R; Qu X; Wang Y; Huang J; Yu J Anal Chim Acta; 2020 Apr; 1104():156-163. PubMed ID: 32106947 [TBL] [Abstract][Full Text] [Related]
13. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification. Luan Q; Gan N; Cao Y; Li T J Agric Food Chem; 2017 Jul; 65(28):5731-5740. PubMed ID: 28654744 [TBL] [Abstract][Full Text] [Related]
14. A Multicolor Fluorescence Nanoprobe Platform Using Two-Dimensional Metal Organic Framework Nanosheets and Double Stirring Bar Assisted Target Replacement for Multiple Bioanalytical Applications. Yang Q; Hong J; Wu YX; Cao Y; Wu D; Hu F; Gan N ACS Appl Mater Interfaces; 2019 Nov; 11(44):41506-41515. PubMed ID: 31580049 [TBL] [Abstract][Full Text] [Related]
15. DNA cyclic assembling control in an electrochemical strategy with MoS Wang L; Zhang L; Yu Y; Lin B; Wang Y; Guo M; Cao Y Mikrochim Acta; 2021 Jul; 188(8):264. PubMed ID: 34287718 [TBL] [Abstract][Full Text] [Related]
16. Palindromic Molecular Beacon Based Z-Scheme BiOCl-Au-CdS Photoelectrochemical Biodetection. Zeng R; Luo Z; Su L; Zhang L; Tang D; Niessner R; Knopp D Anal Chem; 2019 Feb; 91(3):2447-2454. PubMed ID: 30609356 [TBL] [Abstract][Full Text] [Related]
17. Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridization chain reaction and strand-displacement amplification. Zeng R; Su L; Luo Z; Zhang L; Lu M; Tang D Anal Chim Acta; 2018 Dec; 1038():21-28. PubMed ID: 30278904 [TBL] [Abstract][Full Text] [Related]
18. Ratiometric Dual Signal-Enhancing-Based Electrochemical Biosensor for Ultrasensitive Kanamycin Detection. Tian L; Zhang Y; Wang L; Geng Q; Liu D; Duan L; Wang Y; Cui J ACS Appl Mater Interfaces; 2020 Nov; 12(47):52713-52720. PubMed ID: 33170623 [TBL] [Abstract][Full Text] [Related]
19. Cascaded and nonlinear DNA assembly amplification for sensitive and aptamer-based detection of kanamycin. Liao L; Li X; Jiang B; Zhou W; Yuan R; Xiang Y Anal Chim Acta; 2022 Apr; 1204():339730. PubMed ID: 35397905 [TBL] [Abstract][Full Text] [Related]
20. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Leng X; Wang Y; Li R; Liu S; Yao J; Pei Q; Cui X; Tu Y; Tang D; Huang J Mikrochim Acta; 2018 Feb; 185(3):168. PubMed ID: 29594727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]