These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 32124315)
21. Methods for prediction of peptide binding to MHC molecules: a comparative study. Yu K; Petrovsky N; Schönbach C; Koh JY; Brusic V Mol Med; 2002 Mar; 8(3):137-48. PubMed ID: 12142545 [TBL] [Abstract][Full Text] [Related]
22. A combined bioinformatic approach oriented to the analysis and design of peptides with high affinity to MHC class I molecules. Del Carpio CA; Hennig T; Fickel S; Yoshimori A Immunol Cell Biol; 2002 Jun; 80(3):286-99. PubMed ID: 12067416 [TBL] [Abstract][Full Text] [Related]
23. Prediction of MHC class I binding peptides, using SVMHC. Dönnes P; Elofsson A BMC Bioinformatics; 2002 Sep; 3():25. PubMed ID: 12225620 [TBL] [Abstract][Full Text] [Related]
24. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Karosiene E; Lundegaard C; Lund O; Nielsen M Immunogenetics; 2012 Mar; 64(3):177-86. PubMed ID: 22009319 [TBL] [Abstract][Full Text] [Related]
25. In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study. Hattotuwagama CK; Doytchinova IA; Flower DR J Chem Inf Model; 2005; 45(5):1415-23. PubMed ID: 16180918 [TBL] [Abstract][Full Text] [Related]
26. [MHC-I epitope presentation prediction based on transfer learning]. Hu WP; Li YP; Zhang XQ Yi Chuan; 2019 Nov; 41(11):1041-1049. PubMed ID: 31735706 [TBL] [Abstract][Full Text] [Related]
27. MHCSeqNet: a deep neural network model for universal MHC binding prediction. Phloyphisut P; Pornputtapong N; Sriswasdi S; Chuangsuwanich E BMC Bioinformatics; 2019 May; 20(1):270. PubMed ID: 31138107 [TBL] [Abstract][Full Text] [Related]
28. Improving the prediction of HLA class I-binding peptides using a supertype-based method. Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661 [TBL] [Abstract][Full Text] [Related]
29. HLA class I binding prediction via convolutional neural networks. Vang YS; Xie X Bioinformatics; 2017 Sep; 33(17):2658-2665. PubMed ID: 28444127 [TBL] [Abstract][Full Text] [Related]
30. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC-Peptide Binding Data Set. Bonsack M; Hoppe S; Winter J; Tichy D; Zeller C; Küpper MD; Schitter EC; Blatnik R; Riemer AB Cancer Immunol Res; 2019 May; 7(5):719-736. PubMed ID: 30902818 [TBL] [Abstract][Full Text] [Related]
31. STMHCpan, an accurate Star-Transformer-based extensible framework for predicting MHC I allele binding peptides. Ye Z; Li S; Mi X; Shao B; Dai Z; Ding B; Feng S; Sun B; Shen Y; Xiao Z Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122066 [TBL] [Abstract][Full Text] [Related]
32. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks. Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490 [TBL] [Abstract][Full Text] [Related]
33. Predicted MHC peptide binding promiscuity explains MHC class I 'hotspots' of antigen presentation defined by mass spectrometry eluted ligand data. Jappe EC; Kringelum J; Trolle T; Nielsen M Immunology; 2018 Jul; 154(3):407-417. PubMed ID: 29446062 [TBL] [Abstract][Full Text] [Related]
34. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity. Hattotuwagama CK; Guan P; Doytchinova IA; Flower DR Org Biomol Chem; 2004 Nov; 2(22):3274-83. PubMed ID: 15534705 [TBL] [Abstract][Full Text] [Related]
35. A practical guide to structure-based prediction of MHC-binding peptides. Ranganathan S; Tong JC Methods Mol Biol; 2007; 409():301-8. PubMed ID: 18450010 [TBL] [Abstract][Full Text] [Related]
36. Distribution of tripeptides in MHC binding peptides. Anishettt S; Pennathur G Protein Pept Lett; 2007; 14(6):552-6. PubMed ID: 17627595 [TBL] [Abstract][Full Text] [Related]
37. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. Nielsen M; Lundegaard C; Blicher T; Lamberth K; Harndahl M; Justesen S; Røder G; Peters B; Sette A; Lund O; Buus S PLoS One; 2007 Aug; 2(8):e796. PubMed ID: 17726526 [TBL] [Abstract][Full Text] [Related]
38. Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions. Bassani-Sternberg M; Gfeller D J Immunol; 2016 Sep; 197(6):2492-9. PubMed ID: 27511729 [TBL] [Abstract][Full Text] [Related]
39. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity. Liu G; Li D; Li Z; Qiu S; Li W; Chao CC; Yang N; Li H; Cheng Z; Song X; Cheng L; Zhang X; Wang J; Yang H; Ma K; Hou Y; Li B Gigascience; 2017 May; 6(5):1-11. PubMed ID: 28327987 [TBL] [Abstract][Full Text] [Related]