These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 32124315)

  • 41. GradDock: rapid simulation and tailored ranking functions for peptide-MHC Class I docking.
    Kyeong HH; Choi Y; Kim HS
    Bioinformatics; 2018 Feb; 34(3):469-476. PubMed ID: 28968726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
    Paul S; Karosiene E; Dhanda SK; Jurtz V; Edwards L; Nielsen M; Sette A; Peters B
    Front Immunol; 2018; 9():1795. PubMed ID: 30127785
    [TBL] [Abstract][Full Text] [Related]  

  • 43. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.
    Pei B; Hsu YH
    Immunogenetics; 2020 Jul; 72(5):295-304. PubMed ID: 32577798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Static energy analysis of MHC class I and class II peptide-binding affinity.
    Davies MN; Flower DR
    Methods Mol Biol; 2007; 409():309-20. PubMed ID: 18450011
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of MHC Ligands and Establishing MHC Class I Peptide Motifs.
    Ghosh M; Di Marco M; Stevanović S
    Methods Mol Biol; 2019; 1988():137-147. PubMed ID: 31147938
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding.
    Wang X; Wu T; Jiang Y; Chen T; Pan D; Jin Z; Xie J; Quan L; Lyu Q
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175759
    [TBL] [Abstract][Full Text] [Related]  

  • 47. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction profiling of T-cell epitopes with MHC-class I molecules.
    Dash BP; Mukherjee S; Suhas VL; Chandra N
    Protein Pept Lett; 2007; 14(6):557-64. PubMed ID: 17627596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates.
    Paul S; Sidney J; Sette A; Peters B
    Curr Protoc Immunol; 2016 Aug; 114():18.19.1-18.19.24. PubMed ID: 27479659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A community resource benchmarking predictions of peptide binding to MHC-I molecules.
    Peters B; Bui HH; Frankild S; Nielson M; Lundegaard C; Kostem E; Basch D; Lamberth K; Harndahl M; Fleri W; Wilson SS; Sidney J; Lund O; Buus S; Sette A
    PLoS Comput Biol; 2006 Jun; 2(6):e65. PubMed ID: 16789818
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insights from MHC-bound peptides.
    Margalit H; Altuvia Y
    Novartis Found Symp; 2003; 254():77-90; discussion 91-101, 216-22, 250-2. PubMed ID: 14712933
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network.
    Brusic V; Rudy G; Honeyman G; Hammer J; Harrison L
    Bioinformatics; 1998; 14(2):121-30. PubMed ID: 9545443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Peptide length-based prediction of peptide-MHC class II binding.
    Chang ST; Ghosh D; Kirschner DE; Linderman JJ
    Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity.
    Wu J; Li J; Chen S; Zhou Z
    Methods Mol Biol; 2024; 2809():237-244. PubMed ID: 38907901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.
    Doytchinova IA; Walshe VA; Jones NA; Gloster SE; Borrow P; Flower DR
    J Immunol; 2004 Jun; 172(12):7495-502. PubMed ID: 15187128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TAPPred prediction of TAP-binding peptides in antigens.
    Bhasin M; Lata S; Raghava GP
    Methods Mol Biol; 2007; 409():381-6. PubMed ID: 18450016
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism.
    Ye Y; Wang J; Xu Y; Wang Y; Pan Y; Song Q; Liu X; Wan J
    BMC Bioinformatics; 2021 Jan; 22(1):7. PubMed ID: 33407098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Scrutinizing MHC-I binding peptides and their limits of variation.
    Koch CP; Perna AM; Pillong M; Todoroff NK; Wrede P; Folkers G; Hiss JA; Schneider G
    PLoS Comput Biol; 2013; 9(6):e1003088. PubMed ID: 23754940
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands.
    Reche PA; Reinherz EL
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W138-42. PubMed ID: 15980443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.