These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32124449)

  • 41. Genome-wide identification and expression analysis of the CLC superfamily genes in tea plants (Camellia sinensis).
    Xing A; Ma Y; Wu Z; Nong S; Zhu J; Sun H; Tao J; Wen B; Zhu X; Fang W; Li X; Wang Y
    Funct Integr Genomics; 2020 Jul; 20(4):497-508. PubMed ID: 31897824
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.).
    Morita A; Horie H; Fujii Y; Takatsu S; Watanabe N; Yagi A; Yokota H
    Phytochemistry; 2004 Oct; 65(20):2775-80. PubMed ID: 15474563
    [TBL] [Abstract][Full Text] [Related]  

  • 43.
    Luo B; Guang M; Yun W; Ding S; Ren S; Gao H
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887104
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aluminium and fluoride concentrations of three tea varieties growing at Lantau Island, Hong Kong.
    Fung KF; Zhang ZQ; Wong JW; Wong MH
    Environ Geochem Health; 2003 Jun; 25(2):219-32. PubMed ID: 12901167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of Humic Acid on Pb Uptake and Accumulation in Tea Plants.
    Xu Q; Duan D; Cai Q; Shi J
    J Agric Food Chem; 2018 Nov; 66(46):12327-12334. PubMed ID: 30388006
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential accumulation of specialized metabolite l-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves.
    Cheng S; Fu X; Liao Y; Xu X; Zeng L; Tang J; Li J; Lai J; Yang Z
    Food Chem; 2019 Mar; 276():93-100. PubMed ID: 30409668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selenium foliar application contributes to decrease ratio of water-soluble fluoride and improve physio-biochemical components in tea leaves.
    Niu H; Zhan K; Cheng X; Deng Y; Hou C; Zhao M; Peng C; Chen G; Hou R; Li D; Wan X; Cai H
    Ecotoxicol Environ Saf; 2023 Nov; 266():115568. PubMed ID: 37832482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze).
    Morita A; Yanagisawa O; Takatsu S; Maeda S; Hiradate S
    Phytochemistry; 2008 Jan; 69(1):147-53. PubMed ID: 17643454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distribution characteristics of fluoride and aluminum in soil profiles of an abandoned tea plantation and their uptake by six woody species.
    Xie ZM; Ye ZH; Wong MH
    Environ Int; 2001 May; 26(5-6):341-6. PubMed ID: 11392749
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress.
    Mukhopadyay M; Bantawa P; Das A; Sarkar B; Bera B; Ghosh P; Mondal TK
    Biometals; 2012 Dec; 25(6):1141-54. PubMed ID: 22850809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contrasting allocation of magnesium, calcium and manganese in leaves of tea (Camellia sinensis (L.) Kuntze) plants may explain their different extraction efficiency into tea.
    Pongrac P; Tolrà R; Hajiboland R; Vogel-Mikuš K; Kelemen M; Vavpetič P; Pelicon P; Barceló J; Regvar M; Poschenrieder C
    Food Chem Toxicol; 2020 Jan; 135():110974. PubMed ID: 31743745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alteration of local and systemic amino acids metabolism for the inducible defense in tea plant (Camellia sinensis) in response to leaf herbivory by Ectropis oblique.
    Li L; Li T; Jiang Y; Yang Y; Zhang L; Jiang Z; Wei C; Wan X; Yang H
    Arch Biochem Biophys; 2020 Apr; 683():108301. PubMed ID: 32057759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CsFEX, a Fluoride Export Protein Gene from Camellia sinensis, Alleviates Fluoride Toxicity in Transgenic Escherichia coli and Arabidopsis thaliana.
    Zhu J; Xing A; Wu Z; Tao J; Ma Y; Wen B; Zhu X; Fang W; Wang Y
    J Agric Food Chem; 2019 May; 67(21):5997-6006. PubMed ID: 31056906
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of Regulatory Networks and Hub Genes Controlling Nitrogen Uptake in Tea Plants [
    Zhang F; Wang L; Bai P; Wei K; Zhang Y; Ruan L; Wu L; Cheng H
    J Agric Food Chem; 2020 Feb; 68(8):2445-2456. PubMed ID: 31899627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis.
    Peuke AD
    J Exp Bot; 2010 Mar; 61(3):635-55. PubMed ID: 20032109
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea (
    Tai Y; Ling C; Wang H; Yang L; She G; Wang C; Yu S; Chen W; Liu C; Wan X
    J Agric Food Chem; 2019 Sep; 67(36):10235-10244. PubMed ID: 31436988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diverse Metabolite Variations in Tea (Camellia sinensis L.) Leaves Grown Under Various Shade Conditions Revisited: A Metabolomics Study.
    Ji HG; Lee YR; Lee MS; Hwang KH; Park CY; Kim EH; Park JS; Hong YS
    J Agric Food Chem; 2018 Feb; 66(8):1889-1897. PubMed ID: 29409322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of the site-specific accumulation of catechins in the tea plant (Camellia sinensis (L.) O. Kuntze) via vanillin-HCl staining.
    Liu Y; Gao L; Xia T; Zhao L
    J Agric Food Chem; 2009 Nov; 57(21):10371-6. PubMed ID: 19831398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves.
    Wang X; Zeng L; Liao Y; Zhou Y; Xu X; Dong F; Yang Z
    Food Chem; 2019 Jan; 270():17-24. PubMed ID: 30174031
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uptake, accumulation, translocation and transformation of seneciphylline (Sp) and seneciphylline-N-oxide (SpNO) by Camellia sinensis L.
    Lu Y; Han H; Jiang C; Liu H; Wang Z; Chai Y; Zhang X; Qiu J; Chen H
    Environ Int; 2024 Jun; 188():108765. PubMed ID: 38810495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.