These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32124449)

  • 61. Long-distance transport of cadmium from roots to leaves of Solanum melongena.
    Qin Q; Li X; Zhuang J; Weng L; Liu W; Tai P
    Ecotoxicology; 2015 Dec; 24(10):2224-32. PubMed ID: 26407708
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Zinc stress affects ionome and metabolome in tea plants.
    Zhang Y; Wang Y; Ding Z; Wang H; Song L; Jia S; Ma D
    Plant Physiol Biochem; 2017 Feb; 111():318-328. PubMed ID: 27992770
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular cloning and expression analysis of ammonium transporters in tea plants (Camellia sinensis (L.) O. Kuntze) under different nitrogen treatments.
    Zhang F; Liu Y; Wang L; Bai P; Ruan L; Zhang C; Wei K; Cheng H
    Gene; 2018 Jun; 658():136-145. PubMed ID: 29535022
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rebuttal to the Comment on Metabolomics for a Millenniums-Old Crop: Tea Plant (
    Jiang CK; Chen L
    J Agric Food Chem; 2020 Jan; 68(2):699. PubMed ID: 31773958
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phenolics metabolism in boron-deficient tea [Camellia sinensis (L.) O. Kuntze] plants.
    Hajiboland R; Bahrami-Rad S; Bastani S
    Acta Biol Hung; 2013 Jun; 64(2):196-206. PubMed ID: 23739888
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Low caffeine content in novel grafted tea with Camellia sinensis as scions and Camellia oleifera as stocks.
    Deng WW; Li M; Gu CC; Li DX; Ma LL; Jin Y; Wan XC
    Nat Prod Commun; 2015 May; 10(5):789-92. PubMed ID: 26058159
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Heavy metal content in tea soils and their distribution in different parts of tea plants, Camellia sinensis (L). O. Kuntze.
    Seenivasan S; Anderson TA; Muraleedharan N
    Environ Monit Assess; 2016 Jul; 188(7):428. PubMed ID: 27334344
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Accumulation law of epigoitrin in roots of Isatis indigotica of different breed types].
    Liu QQ; Wang KC; Luo CH; Zou LS
    Zhong Yao Cai; 2013 Feb; 36(2):199-201. PubMed ID: 23901642
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants.
    Hajiboland R; Barceló J; Poschenrieder C; Tolrà R
    J Inorg Biochem; 2013 Nov; 128():183-7. PubMed ID: 23910825
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of vitro sucrose on quality components of tea plants (Camellia sinensis) based on transcriptomic and metabolic analysis.
    Qian Y; Zhang S; Yao S; Xia J; Li Y; Dai X; Wang W; Jiang X; Liu Y; Li M; Gao L; Xia T
    BMC Plant Biol; 2018 Jun; 18(1):121. PubMed ID: 29914362
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Complementary iTRAQ Proteomic and Transcriptomic Analyses of Leaves in Tea Plant ( Camellia sinensis L.) with Different Maturity and Regulatory Network of Flavonoid Biosynthesis.
    Wu LY; Fang ZT; Lin JK; Sun Y; Du ZZ; Guo YL; Liu JH; Liang YR; Ye JH
    J Proteome Res; 2019 Jan; 18(1):252-264. PubMed ID: 30427694
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fluoride concentration in teas derived from Camellia Sinensis produced in Argentina.
    Valadas LAR; Girão Júnior FJ; Lotif MAL; Fernández CE; Bandeira MAM; Fonteles MMF; Bottenberg P; Squassi A
    Environ Monit Assess; 2022 Aug; 194(10):682. PubMed ID: 35976461
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Copper induced oxidative stress in tea (Camellia sinensis) leaves.
    Saha D; Mandal S; Saha A
    J Environ Biol; 2012 Sep; 33(5):861-6. PubMed ID: 23734451
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Elucidation of Differential Accumulation of 1-Phenylethanol in Flowers and Leaves of Tea (Camellia sinensis) Plants.
    Dong F; Zhou Y; Zeng L; Peng Q; Chen Y; Zhang L; Su X; Watanabe N; Yang Z
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27563859
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition.
    Jiang J; Gai Z; Wang Y; Fan K; Sun L; Wang H; Ding Z
    BMC Genomics; 2018 Nov; 19(1):840. PubMed ID: 30477445
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Delivery of acetamiprid to tea leaves enabled by porous silica nanoparticles: efficiency, distribution and metabolism of acetamiprid in tea plants.
    Wang X; Yan M; Zhou J; Song W; Xiao Y; Cui C; Gao W; Ke F; Zhu J; Gu Z; Hou R
    BMC Plant Biol; 2021 Jul; 21(1):337. PubMed ID: 34271878
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Agricultural research. Reading the tea leaves for effects of climate change.
    Larson C
    Science; 2015 May; 348(6238):953-4. PubMed ID: 26023112
    [No Abstract]   [Full Text] [Related]  

  • 78. A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.).
    Li Q; Li J; Liu S; Huang J; Lin H; Wang K; Cheng X; Liu Z
    Int J Mol Sci; 2015 Jun; 16(6):14007-38. PubMed ID: 26096006
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Uptake, translocation, and metabolism of anthracene in tea plants.
    Yang M; Luo F; Zhang X; Wang X; Sun H; Lou Z; Zhou L; Chen Z
    Sci Total Environ; 2022 May; 821():152905. PubMed ID: 35031356
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Metabolic Regulation Profiling of Carbon and Nitrogen in Tea Plants [
    Li Y; Jeyaraj A; Yu H; Wang Y; Ma Q; Chen X; Sun H; Zhang H; Ding Z; Li X
    J Agric Food Chem; 2020 Jan; 68(4):961-974. PubMed ID: 31910000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.