BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32124609)

  • 1. Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials.
    Sigmund G; Gharasoo M; Hüffer T; Hofmann T
    Environ Sci Technol; 2020 Apr; 54(7):4583-4591. PubMed ID: 32124609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.
    Kah M; Sigmund G; Xiao F; Hofmann T
    Water Res; 2017 Nov; 124():673-692. PubMed ID: 28825985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar.
    Kupryianchyk D; Hale S; Zimmerman AR; Harvey O; Rutherford D; Abiven S; Knicker H; Schmidt HP; Rumpel C; Cornelissen G
    Chemosphere; 2016 Feb; 144():879-87. PubMed ID: 26421628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheat and ryegrass biomass ashes as effective sorbents for metallic and organic pollutants from contaminated water in lab-engineered cartridge filtration system.
    Guérin T; Ghinet A; Hossart M; Waterlot C
    Bioresour Technol; 2020 Dec; 318():124044. PubMed ID: 32889120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification.
    Rajapaksha AU; Chen SS; Tsang DC; Zhang M; Vithanage M; Mandal S; Gao B; Bolan NS; Ok YS
    Chemosphere; 2016 Apr; 148():276-91. PubMed ID: 26820777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of phosphate removal from water by carbonaceous sorbents.
    Almanassra IW; Kochkodan V; Mckay G; Atieh MA; Al-Ansari T
    J Environ Manage; 2021 Jun; 287():112245. PubMed ID: 33735679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochar as low-cost sorbent of volatile fuel organic compounds: potential application to water remediation.
    Saiz-Rubio R; Balseiro-Romero M; Antelo J; Díez E; Fiol S; Macías F
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11605-11617. PubMed ID: 30484048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges.
    Gill SS; Goyal T; Goswami M; Patel P; Das Gupta G; Verma SK
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):69727-69750. PubMed ID: 37160511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges.
    Ma X; Agarwal S
    Molecules; 2016 May; 21(5):. PubMed ID: 27187338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, Optimization, and Performance Demonstration of Electrospun Carbon Nanofiber-Carbon Nanotube Composite Sorbents for Point-of-Use Water Treatment.
    Peter KT; Vargo JD; Rupasinghe TP; De Jesus A; Tivanski AV; Sander EA; Myung NV; Cwiertny DM
    ACS Appl Mater Interfaces; 2016 May; 8(18):11431-40. PubMed ID: 27093306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon.
    Li MS; Wang R; Fu Kuo DT; Shih YH
    Environ Sci Process Impacts; 2017 Mar; 19(3):276-287. PubMed ID: 28165513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of phthalic acid esters in two kinds of landfill leachates by the carbonaceous sorbents.
    Gao B; Wang P; Zhou H; Zhang Z; Wu F; Jin J; Kang M; Sun K
    Bioresour Technol; 2013 May; 136():295-301. PubMed ID: 23567694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review.
    Inyang M; Dickenson E
    Chemosphere; 2015 Sep; 134():232-40. PubMed ID: 25958252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Sorption to Carbon-Based Materials and Nanomaterials Using Inverse Liquid Chromatography.
    Metzelder F; Funck M; Hüffer T; Schmidt TC
    Environ Sci Technol; 2018 Sep; 52(17):9731-9740. PubMed ID: 30075076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Toxicol Chem; 2012 Jan; 31(1):79-85. PubMed ID: 22021047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via π-PAHB: Sorption experiments and DFT calculations.
    Zhang K; Chen B; Mao J; Zhu L; Xing B
    Environ Pollut; 2018 Sep; 240():342-352. PubMed ID: 29751330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent--a critical review.
    Mohan D; Sarswat A; Ok YS; Pittman CU
    Bioresour Technol; 2014 May; 160():191-202. PubMed ID: 24636918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochar modification to enhance sorption of inorganics from water.
    Sizmur T; Fresno T; Akgül G; Frost H; Moreno-Jiménez E
    Bioresour Technol; 2017 Dec; 246():34-47. PubMed ID: 28781204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the Sorption of Aromatic Acids to Noncarbonized and Carbonized Sorbents.
    Sigmund G; Sun H; Hofmann T; Kah M
    Environ Sci Technol; 2016 Apr; 50(7):3641-8. PubMed ID: 26949216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.