These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32124609)

  • 21. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars.
    Han Z; Sani B; Mrozik W; Obst M; Beckingham B; Karapanagioti HK; Werner D
    Water Res; 2015 Mar; 70():394-403. PubMed ID: 25555224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of polar and ionic organic compounds on activated carbon: Surface chemistry matters.
    Zhou J; Saeidi N; Wick LY; Kopinke FD; Georgi A
    Sci Total Environ; 2021 Nov; 794():148508. PubMed ID: 34218142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water.
    Hao Z; Wang C; Yan Z; Jiang H; Xu H
    Chemosphere; 2018 Nov; 211():962-969. PubMed ID: 30119027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy of carbonaceous materials for sorbing polychlorinated biphenyls from aqueous solution.
    Beless B; Rifai HS; Rodrigues DF
    Environ Sci Technol; 2014 Sep; 48(17):10372-9. PubMed ID: 25110809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon.
    Lu C; Liu C; Rao GP
    J Hazard Mater; 2008 Feb; 151(1):239-46. PubMed ID: 17618049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors.
    Xiang Y; Xu Z; Wei Y; Zhou Y; Yang X; Yang Y; Yang J; Zhang J; Luo L; Zhou Z
    J Environ Manage; 2019 May; 237():128-138. PubMed ID: 30784860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction mechanisms of organic contaminants with burned straw ash charcoal.
    Huang W; Chen B
    J Environ Sci (China); 2010; 22(10):1586-94. PubMed ID: 21235190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200).
    Valderrama C; Cortina JL; Farran A; Gamisans X; Lao C
    J Colloid Interface Sci; 2007 Jun; 310(1):35-46. PubMed ID: 17367802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sorption of ionizable organic chemicals to carbonaceous adsorbents: Solution pH change and contributions of different species.
    Chen Z; Ji W
    Sci Total Environ; 2019 Jan; 647():1069-1079. PubMed ID: 30180315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competitive sorption experiments reveal new regression models to predict PhACs sorption on carbonaceous materials.
    Muñoz-Vega E; Horovitz M; Dönges L; Schiedek T; Schulz S; Schüth C
    J Hazard Mater; 2024 Jun; 471():134239. PubMed ID: 38640667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity and Reactivity of Pyrogenic Carbonaceous Matter toward Organic Compounds.
    Pignatello JJ; Mitch WA; Xu W
    Environ Sci Technol; 2017 Aug; 51(16):8893-8908. PubMed ID: 28753285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbonaceous materials for removal and recovery of phosphate species: Limitations, successes and future improvement.
    Recepoglu YK; Goren AY; Orooji Y; Khataee A
    Chemosphere; 2022 Jan; 287(Pt 2):132177. PubMed ID: 34826904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.
    Choi H; Al-Abed SR
    J Hazard Mater; 2009 Jun; 165(1-3):860-6. PubMed ID: 19059706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon.
    Gil A; Taoufik N; García AM; Korili SA
    Environ Technol; 2019 Sep; 40(23):3017-3030. PubMed ID: 29634434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methylmercury sorption onto engineered materials.
    Muller KA; Brandt CC; Mathews TJ; Brooks SC
    J Environ Manage; 2019 Sep; 245():481-488. PubMed ID: 31170637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorption of chlorophenolates in soils and aquifer and marine sediments.
    Fingler S; Drevenkar V; Fröbe Z
    Arch Environ Contam Toxicol; 2005 Jan; 48(1):32-9. PubMed ID: 15657803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amphiphilic hollow carbonaceous microspheres for the sorption of phenol from water.
    Guan Z; Liu L; He L; Yang S
    J Hazard Mater; 2011 Nov; 196():270-7. PubMed ID: 21943920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A synthesis of parameters related to the binding of neutral organic compounds to charcoal.
    Hale SE; Arp HP; Kupryianchyk D; Cornelissen G
    Chemosphere; 2016 Feb; 144():65-74. PubMed ID: 26347927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes.
    Metzelder F; Funck M; Schmidt TC
    Environ Sci Technol; 2018 Jan; 52(2):628-637. PubMed ID: 29257678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials.
    Sotelo JL; Rodríguez AR; Mateos MM; Hernández SD; Torrellas SA; Rodríguez JG
    J Environ Sci Health B; 2012; 47(7):640-52. PubMed ID: 22560026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.