BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 32124687)

  • 21. A Review of Water-Resistant Cellulose-Based Materials in Pharmaceutical and Biomedical Application.
    He B; Liu X; Qi S; Zheng R; Chang M; Lin Q; Ren J
    Curr Med Chem; 2021; 28(40):8296-8318. PubMed ID: 33557729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrastrong and flame-retardant microfibers via microfluidic wet spinning of phosphorylated cellulose nanofibrils.
    Ren N; Chen S; Cui M; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Nov; 296():119945. PubMed ID: 36087993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Doping of Anionic Clusters Facilitated Direct Fabrication of Commercial Cellulose Nanofibrils for Long-Range Ordered Layer Structures.
    Wang H; Song R; Li M; Liu C; Ke Y; Yin P
    Biomacromolecules; 2022 Aug; 23(8):3329-3335. PubMed ID: 35875983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels.
    Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L
    Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin.
    Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H
    Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and Characterization of Softwood and Hardwood Nanofibril Hydrogels: Toward Wound Dressing Applications.
    Baş Y; Berglund L; Niittylä T; Zattarin E; Aili D; Sotra Z; Rinklake I; Junker J; Rakar J; Oksman K
    Biomacromolecules; 2023 Dec; 24(12):5605-5619. PubMed ID: 37950687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications.
    Abdul Khalil HPS; Adnan AS; Yahya EB; Olaiya NG; Safrida S; Hossain MS; Balakrishnan V; Gopakumar DA; Abdullah CK; Oyekanmi AA; Pasquini D
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32781602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and characterization of apoacynum venetum cellulose nanofibers reinforced chitosan-based composite hydrogels.
    Wang C; Wang L; Zhang Q; Cheng L; Yue H; Xia X; Zhou H
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111441. PubMed ID: 33450706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review.
    Yu K; Yang L; Zhang N; Wang S; Liu H
    Int J Biol Macromol; 2024 Jun; 272(Pt 2):132668. PubMed ID: 38821305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles.
    Lu J; Zhu W; Dai L; Si C; Ni Y
    Carbohydr Polym; 2019 Jul; 215():289-295. PubMed ID: 30981356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Research progress of smart response composite hydrogels based on nanocellulose.
    Hu S; Zhi Y; Shan S; Ni Y
    Carbohydr Polym; 2022 Jan; 275():118741. PubMed ID: 34742444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable, thiol-ene, interpenetrating network hydrogels of norbornene-modified carboxymethyl cellulose and cellulose nanofibrils.
    Morrison TX; Gramlich WM
    Carbohydr Polym; 2023 Nov; 319():121173. PubMed ID: 37567714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Swelling-based preparation of polypropylene nanocomposite with non-functionalized cellulose nanofibrils.
    Kim DW; Han S; Lee H; Shin J; Choi SQ
    Carbohydr Polym; 2022 Feb; 277():118847. PubMed ID: 34893257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications.
    Aoudi B; Boluk Y; Gamal El-Din M
    Sci Total Environ; 2022 Oct; 843():156903. PubMed ID: 35753453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the water interactions of cellulose nanofibril hydrogels using willow bark extract.
    Huynh N; Valle-Delgado JJ; Fang W; Arola S; Österberg M
    Carbohydr Polym; 2023 Oct; 317():121095. PubMed ID: 37364945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications.
    Rana AK; Gupta VK; Hart P; Thakur VK
    Environ Res; 2024 Feb; 243():117889. PubMed ID: 38086501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology.
    Song Y; Kim B; Park JD; Lee D
    Carbohydr Polym; 2023 Jan; 300():120262. PubMed ID: 36372514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chitosan-Nanocellulose Composites for Regenerative Medicine Applications.
    Khan A; Wang B; Ni Y
    Curr Med Chem; 2020; 27(28):4584-4592. PubMed ID: 31985365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocellulose in biomedical and biosensing applications: A review.
    Subhedar A; Bhadauria S; Ahankari S; Kargarzadeh H
    Int J Biol Macromol; 2021 Jan; 166():587-600. PubMed ID: 33130267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.