These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 32124687)

  • 61. A review of recent advances in biomedical applications of smart cellulose-based hydrogels.
    Liu H; Hu Y; Liu Y; Hu R; Wu X; Li B
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127149. PubMed ID: 37778583
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Challenges and recent trends with the development of hydrogel fiber for biomedical applications.
    Ansar R; Saqib S; Mukhtar A; Niazi MBK; Shahid M; Jahan Z; Kakar SJ; Uzair B; Mubashir M; Ullah S; Khoo KS; Lim HR; Show PL
    Chemosphere; 2022 Jan; 287(Pt 1):131956. PubMed ID: 34523459
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary.
    Zou P; Yao J; Cui YN; Zhao T; Che J; Yang M; Li Z; Gao C
    Gels; 2022 Jun; 8(6):. PubMed ID: 35735708
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recent developments in nanocellulose-based aerogels as air filters: A review.
    Sepahvand S; Kargarzadeh H; Jonoobi M; Ashori A; Ismaeilimoghadam S; Varghese RT; Chirayl CJ; Azimi B; Danti S
    Int J Biol Macromol; 2023 Aug; 246():125721. PubMed ID: 37419257
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials.
    Guimarães BMR; Scatolino MV; Martins MA; Ferreira SR; Mendes LM; Lima JT; Junior MG; Tonoli GHD
    Environ Sci Pollut Res Int; 2022 Feb; 29(6):8665-8683. PubMed ID: 34490567
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Preparation and applications of the polymeric micelle/hydrogel nanocomposites as biomaterials].
    Zeng N; Jiang L; Miao Q; Zhi Y; Shan S; Su H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):609-620. PubMed ID: 34180208
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biomedical Applications of Hemicellulose-Based Hydrogels.
    Liu H; Chen T; Dong C; Pan X
    Curr Med Chem; 2020; 27(28):4647-4659. PubMed ID: 32268859
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Eco-friendly nanocellulose and its biomedical applications: current status and future prospect.
    Nehra P; Chauhan RP
    J Biomater Sci Polym Ed; 2021 Jan; 32(1):112-149. PubMed ID: 32892717
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recent Advances in the Fabrication and Environmental Science Applications of Cellulose Nanofibril-Based Functional Materials.
    Zhang L; Guo L; Wei G
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576613
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying.
    Darpentigny C; Nonglaton G; Bras J; Jean B
    Carbohydr Polym; 2020 Feb; 229():115560. PubMed ID: 31826439
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Polypeptide-based self-healing hydrogels: Design and biomedical applications.
    Cai L; Liu S; Guo J; Jia YG
    Acta Biomater; 2020 Sep; 113():84-100. PubMed ID: 32634482
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Super flexible, self-healing, and self-adhesive double network hydrogel reinforced by okara cellulose nanofibrils.
    Li P; Liu R; Lei H; Jian B; Zhou M; Zhou X; Li X; Wang Y; Zhou B
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129083. PubMed ID: 38163511
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films.
    Yu Z; Alsammarraie FK; Nayigiziki FX; Wang W; Vardhanabhuti B; Mustapha A; Lin M
    Food Res Int; 2017 Sep; 99(Pt 1):166-172. PubMed ID: 28784473
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels.
    Shojaeiarani J; Bajwa D; Shirzadifar A
    Carbohydr Polym; 2019 Jul; 216():247-259. PubMed ID: 31047064
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering.
    Carvalho T; Guedes G; Sousa FL; Freire CSR; Santos HA
    Biotechnol J; 2019 Dec; 14(12):e1900059. PubMed ID: 31468684
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cellulose Mesh with Charged Nanocellulose Coatings as a Promising Carrier of Skin and Stem Cells for Regenerative Applications.
    Pajorova J; Skogberg A; Hadraba D; Broz A; Travnickova M; Zikmundova M; Honkanen M; Hannula M; Lahtinen P; Tomkova M; Bacakova L; Kallio P
    Biomacromolecules; 2020 Dec; 21(12):4857-4870. PubMed ID: 33136375
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Application Status of Nanoscale Cellulose-Based Hydrogels in Tissue Engineering and Regenerative Biomedicine.
    Wang C; Bai J; Tian P; Xie R; Duan Z; Lv Q; Tao Y
    Front Bioeng Biotechnol; 2021; 9():732513. PubMed ID: 34869252
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Advances in tissue engineering of nanocellulose-based scaffolds: A review.
    Luo H; Cha R; Li J; Hao W; Zhang Y; Zhou F
    Carbohydr Polym; 2019 Nov; 224():115144. PubMed ID: 31472870
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.
    Tian C; Yi J; Wu Y; Wu Q; Qing Y; Wang L
    Carbohydr Polym; 2016 Jan; 136():485-92. PubMed ID: 26572379
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels.
    Bao Y; He J; Song K; Guo J; Zhou X; Liu S
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.