BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32124692)

  • 41. Thiopurine Methyltransferase Genetic Polymorphisms and Activity and Metabolic Products of Azathioprine in Patients with Inflammatory Bowel Disease.
    Pashazadeh P; Marjani A; Asadi J; Khoshnia M
    Endocr Metab Immune Disord Drug Targets; 2019; 19(4):541-547. PubMed ID: 30451123
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pharmacogenetics in acute lymphoblastic leukemia.
    Cheok MH; Pottier N; Kager L; Evans WE
    Semin Hematol; 2009 Jan; 46(1):39-51. PubMed ID: 19100367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of inherited NUDT15 polymorphisms on thiopurine active metabolites in Japanese children with acute lymphoblastic leukemia.
    Moriyama T; Nishii R; Lin TN; Kihira K; Toyoda H; Jacob N; Kato M; Koh K; Inaba H; Manabe A; Schmiegelow K; Yang JJ; Hori H
    Pharmacogenet Genomics; 2017 Jun; 27(6):236-239. PubMed ID: 28445187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Meta-analysis: Inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease.
    Van Dieren JM; Hansen BE; Kuipers EJ; Nieuwenhuis EE; Van der Woude CJ
    Aliment Pharmacol Ther; 2007 Sep; 26(5):643-52. PubMed ID: 17697198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Revisiting the Role of Thiopurines in Inflammatory Bowel Disease Through Pharmacogenomics and Use of Novel Methods for Therapeutic Drug Monitoring.
    Lim SZ; Chua EW
    Front Pharmacol; 2018; 9():1107. PubMed ID: 30349479
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimizing thiopurine therapy in inflammatory bowel disease.
    Chevaux JB; Peyrin-Biroulet L; Sparrow MP
    Inflamm Bowel Dis; 2011 Jun; 17(6):1428-35. PubMed ID: 20949566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression.
    Zelinkova Z; Derijks LJ; Stokkers PC; Vogels EW; van Kampen AH; Curvers WL; Cohn D; van Deventer SJ; Hommes DW
    Clin Gastroenterol Hepatol; 2006 Jan; 4(1):44-9. PubMed ID: 16431304
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmacogenetics of thiopurine therapy in paediatric IBD patients.
    De Ridder L; Van Dieren JM; Van Deventer HJ; Stokkers PC; Van der Woude JC; Van Vuuren AJ; Benninga MA; Escher JC; Hommes DW
    Aliment Pharmacol Ther; 2006 Apr; 23(8):1137-41. PubMed ID: 16611274
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: the influence of thiopurine methyltransferase pharmacogenetics.
    Lennard L; Cartwright CS; Wade R; Vora A
    Br J Haematol; 2015 Apr; 169(2):228-40. PubMed ID: 25441457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pharmacogenomics in pediatric acute lymphoblastic leukemia: promises and limitations.
    Al-Mahayri ZN; Patrinos GP; Ali BR
    Pharmacogenomics; 2017 May; 18(7):687-699. PubMed ID: 28468529
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Review article: thiopurines in inflammatory bowel disease.
    Derijks LJ; Gilissen LP; Hooymans PM; Hommes DW
    Aliment Pharmacol Ther; 2006 Sep; 24(5):715-29. PubMed ID: 16918876
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Frequency of serious adverse events of thiopurine treatment in normal thiopurine S-methyltransferase genotype children with inflammatory bowel disease].
    Tárnok A
    Orv Hetil; 2019 Feb; 160(5):179-185. PubMed ID: 30686035
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Pharmacogenomics for leukemia treatment].
    Tanaka Y
    Rinsho Ketsueki; 2016 Jul; 57(7):910-8. PubMed ID: 27498738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pharmacogenomic and Pharmacotranscriptomic Profiling of Childhood Acute Lymphoblastic Leukemia: Paving the Way to Personalized Treatment.
    Pavlovic S; Kotur N; Stankovic B; Zukic B; Gasic V; Dokmanovic L
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30832275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NUDT15: a novel player in thiopurine metabolism.
    Meijer B; Mulder CJ; de Boer NK
    J Gastrointestin Liver Dis; 2016 Jun; 25(2):261-2. PubMed ID: 27308664
    [No Abstract]   [Full Text] [Related]  

  • 56. Cost-effectiveness of thiopurine methyltransferase genotype screening in patients about to commence azathioprine therapy for treatment of inflammatory bowel disease.
    Winter J; Walker A; Shapiro D; Gaffney D; Spooner RJ; Mills PR
    Aliment Pharmacol Ther; 2004 Sep; 20(6):593-9. PubMed ID: 15352906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thiopurine S-methyltransferase pharmacogenetics in childhood acute lymphoblastic leukemia.
    Yang JJ; Bhojwani D
    Methods Mol Biol; 2013; 999():273-84. PubMed ID: 23666706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NUDT15 gene polymorphism related to mercaptopurine intolerance in Taiwan Chinese children with acute lymphoblastic leukemia.
    Liang DC; Yang CP; Liu HC; Jaing TH; Chen SH; Hung IJ; Yeh TC; Lin TH; Lai CL; Lai CY; Shih LY
    Pharmacogenomics J; 2016 Nov; 16(6):536-539. PubMed ID: 26503813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Usefulness of thiopurine methyltransferase polymorphism study and metabolites measurement for patients treated by azathioprine].
    Guillotin V; Galli G; Viallard JF
    Rev Med Interne; 2018 Jun; 39(6):421-426. PubMed ID: 29370945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR/Cas9-Mediated Induction of Relapse-Specific
    Nguyen TTT; Tanaka Y; Sanada M; Hosaka M; Tamai M; Kagami K; Komatsu C; Somazu S; Harama D; Kasai S; Watanabe A; Akahane K; Goi K; Inukai T
    Mol Pharmacol; 2023 Apr; 103(4):199-210. PubMed ID: 36669880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.