These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32125028)

  • 1. Characterization of the mechanism of interaction between α
    Matsuo K; Kumashiro M; Gekko K
    Chirality; 2020 May; 32(5):594-604. PubMed ID: 32125028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-induced conformational change of alpha1-acid glycoprotein characterized by vacuum-ultraviolet circular dichroism spectroscopy.
    Matsuo K; Namatame H; Taniguchi M; Gekko K
    Biochemistry; 2009 Sep; 48(38):9103-11. PubMed ID: 19702310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation of membrane-bound proteins revealed by vacuum-ultraviolet circular-dichroism and linear-dichroism spectroscopy.
    Matsuo K; Maki Y; Namatame H; Taniguchi M; Gekko K
    Proteins; 2016 Mar; 84(3):349-59. PubMed ID: 26756612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation of myelin basic protein bound to phosphatidylinositol membrane characterized by vacuum-ultraviolet circular-dichroism spectroscopy and molecular-dynamics simulations.
    Kumashiro M; Izumi Y; Matsuo K
    Proteins; 2021 Oct; 89(10):1251-1261. PubMed ID: 33998060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of alpha1-acid glycoprotein to membrane results in a unique structural change and ligand release.
    Nishi K; Maruyama T; Halsall HB; Handa T; Otagiri M
    Biochemistry; 2004 Aug; 43(32):10513-9. PubMed ID: 15301549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of membrane-interaction mechanisms of proteins using vacuum-ultraviolet circular dichroism spectroscopy.
    Kumashiro M; Matsuo K
    Chirality; 2023 Nov; 35(11):826-837. PubMed ID: 37418251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved sequence-based prediction of protein secondary structures by combining vacuum-ultraviolet circular dichroism spectroscopy with neural network.
    Matsuo K; Watanabe H; Gekko K
    Proteins; 2008 Oct; 73(1):104-12. PubMed ID: 18395813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary-structure analysis of alcohol-denatured proteins by vacuum-ultraviolet circular dichroism spectroscopy.
    Matsuo K; Sakurada Y; Tate S; Namatame H; Taniguchi M; Gekko K
    Proteins; 2012 Jan; 80(1):281-93. PubMed ID: 22076921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy.
    Matsuo K; Yonehara R; Gekko K
    J Biochem; 2004 Mar; 135(3):405-11. PubMed ID: 15113839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and drug-binding properties of alpha(1)-acid glycoprotein in reverse micelles.
    Nishi K; Sakai N; Komine Y; Maruyama T; Halsall HB; Otagiri M
    Biochim Biophys Acta; 2002 Dec; 1601(2):185-91. PubMed ID: 12445481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive secondary-structure analysis of disulfide variants of lysozyme by synchrotron-radiation vacuum-ultraviolet circular dichroism.
    Matsuo K; Watanabe H; Tate S; Tachibana H; Gekko K
    Proteins; 2009 Oct; 77(1):191-201. PubMed ID: 19434752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the interaction between α-1-acid glycoprotein (AGP) and potential Cu/Zn metallo-drugs of benzimidazole derived organic motifs: A multi-spectroscopic and molecular docking study.
    AlAjmi MF; Rehman MT; Khan RA; Khan MA; Muteeb G; Khan MS; Noman OM; Alsalme A; Hussain A
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117457. PubMed ID: 31450223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchrotron-radiation vacuum-ultraviolet circular dichroism spectroscopy in structural biology: an overview.
    Gekko K
    Biophys Physicobiol; 2019; 16():41-58. PubMed ID: 30923662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy.
    Matsuo K; Yonehara R; Gekko K
    J Biochem; 2005 Jul; 138(1):79-88. PubMed ID: 16046451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuum-ultraviolet circular dichroism study of saccharides by synchrotron radiation spectrophotometry.
    Matsuo K; Gekko K
    Carbohydr Res; 2004 Feb; 339(3):591-7. PubMed ID: 15013395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Observation of the Membrane Interaction Processes of β-Lactoglobulin by Time-Resolved Vacuum-Ultraviolet Circular Dichroism.
    Hashimoto S; Matsuo K
    Anal Chem; 2024 Jul; 96(26):10524-10533. PubMed ID: 38907695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuum-ultraviolet circular dichroism analysis of biomolecules.
    Gekko K; Matsuo K
    Chirality; 2006 May; 18(5):329-34. PubMed ID: 16557527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The drug binding site of human alpha1-acid glycoprotein: insight from induced circular dichroism and electronic absorption spectra.
    Zsila F; Iwao Y
    Biochim Biophys Acta; 2007 May; 1770(5):797-809. PubMed ID: 17321687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative effect of hydrophobic and electrostatic forces on alcohol-induced alpha-helix formation of alpha1-acid glycoprotein.
    Nishi K; Komine Y; Sakai N; Maruyama T; Otagiri M
    FEBS Lett; 2005 Jul; 579(17):3596-600. PubMed ID: 15963986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced circular dichroism spectra reveal binding of the antiinflammatory curcumin to human alpha1-acid glycoprotein.
    Zsila F; Bikádi Z; Simonyi M
    Bioorg Med Chem; 2004 Jun; 12(12):3239-45. PubMed ID: 15158792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.