BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32125365)

  • 1. Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder.
    Gao Y; Irvine EE; Eleftheriadou I; Naranjo CJ; Hearn-Yeates F; Bosch L; Glegola JA; Murdoch L; Czerniak A; Meloni I; Renieri A; Kinali M; Mazarakis ND
    Brain; 2020 Mar; 143(3):811-832. PubMed ID: 32125365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice.
    Tang S; Wang IJ; Yue C; Takano H; Terzic B; Pance K; Lee JY; Cui Y; Coulter DA; Zhou Z
    J Neurosci; 2017 Aug; 37(31):7420-7437. PubMed ID: 28674172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The green tea polyphenol epigallocatechin-3-gallate (EGCG) restores CDKL5-dependent synaptic defects in vitro and in vivo.
    Trovò L; Fuchs C; De Rosa R; Barbiero I; Tramarin M; Ciani E; Rusconi L; Kilstrup-Nielsen C
    Neurobiol Dis; 2020 May; 138():104791. PubMed ID: 32032735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and Synaptic Bases of CDKL5 Disorder.
    Zhu YC; Xiong ZQ
    Dev Neurobiol; 2019 Jan; 79(1):8-19. PubMed ID: 30246934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic Spine Instability in a Mouse Model of CDKL5 Disorder Is Rescued by Insulin-like Growth Factor 1.
    Della Sala G; Putignano E; Chelini G; Melani R; Calcagno E; Michele Ratto G; Amendola E; Gross CT; Giustetto M; Pizzorusso T
    Biol Psychiatry; 2016 Aug; 80(4):302-311. PubMed ID: 26452614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder.
    Fuchs C; Gennaccaro L; Trazzi S; Bastianini S; Bettini S; Lo Martire V; Ren E; Medici G; Zoccoli G; Rimondini R; Ciani E
    Neural Plast; 2018; 2018():9726950. PubMed ID: 29977282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder.
    Trazzi S; De Franceschi M; Fuchs C; Bastianini S; Viggiano R; Lupori L; Mazziotti R; Medici G; Lo Martire V; Ren E; Rimondini R; Zoccoli G; Bartesaghi R; Pizzorusso T; Ciani E
    Hum Mol Genet; 2018 May; 27(9):1572-1592. PubMed ID: 29474534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of Cdkl5 transcript isoforms in rat.
    Hector RD; Dando O; Ritakari TE; Kind PC; Bailey ME; Cobb SR
    Gene; 2017 Mar; 603():21-26. PubMed ID: 27940108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic synthesis, dephosphorylation, and degradation: a novel paradigm for an activity-dependent neuronal control of CDKL5.
    La Montanara P; Rusconi L; Locarno A; Forti L; Barbiero I; Tramarin M; Chandola C; Kilstrup-Nielsen C; Landsberger N
    J Biol Chem; 2015 Feb; 290(7):4512-27. PubMed ID: 25555910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons.
    Ricciardi S; Ungaro F; Hambrock M; Rademacher N; Stefanelli G; Brambilla D; Sessa A; Magagnotti C; Bachi A; Giarda E; Verpelli C; Kilstrup-Nielsen C; Sala C; Kalscheuer VM; Broccoli V
    Nat Cell Biol; 2012 Sep; 14(9):911-23. PubMed ID: 22922712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GABA
    Gennaccaro L; Fuchs C; Loi M; Roncacè V; Trazzi S; Ait-Bali Y; Galvani G; Berardi AC; Medici G; Tassinari M; Ren E; Rimondini R; Giustetto M; Aicardi G; Ciani E
    Neurobiol Dis; 2021 Jun; 153():105304. PubMed ID: 33621640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormalities of mitochondrial dynamics and bioenergetics in neuronal cells from CDKL5 deficiency disorder.
    Van Bergen NJ; Massey S; Stait T; Ellery M; Reljić B; Formosa LE; Quigley A; Dottori M; Thorburn D; Stroud DA; Christodoulou J
    Neurobiol Dis; 2021 Jul; 155():105370. PubMed ID: 33905871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and anatomical evidence for specialized voltage-dependent calcium channel gamma isoform expression in the epileptic and ataxic mouse, stargazer.
    Sharp AH; Black JL; Dubel SJ; Sundarraj S; Shen JP; Yunker AM; Copeland TD; McEnery MW
    Neuroscience; 2001; 105(3):599-617. PubMed ID: 11516827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a Secretable, Cell-Penetrating CDKL5 Protein Enhances the Efficacy of Gene Therapy for CDKL5 Deficiency Disorder.
    Medici G; Tassinari M; Galvani G; Bastianini S; Gennaccaro L; Loi M; Mottolese N; Alvente S; Berteotti C; Sagona G; Lupori L; Candini G; Baggett HR; Zoccoli G; Giustetto M; Muotri A; Pizzorusso T; Nakai H; Trazzi S; Ciani E
    Neurotherapeutics; 2022 Oct; 19(6):1886-1904. PubMed ID: 36109452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5.
    Tramarin M; Rusconi L; Pizzamiglio L; Barbiero I; Peroni D; Scaramuzza L; Guilliams T; Cavalla D; Antonucci F; Kilstrup-Nielsen C
    Hum Mol Genet; 2018 Jun; 27(12):2052-2063. PubMed ID: 29618004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacotherapy with sertraline rescues brain development and behavior in a mouse model of CDKL5 deficiency disorder.
    Fuchs C; Gennaccaro L; Ren E; Galvani G; Trazzi S; Medici G; Loi M; Conway E; Devinsky O; Rimondini R; Ciani E
    Neuropharmacology; 2020 May; 167():107746. PubMed ID: 31469994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder.
    Fuchs C; Rimondini R; Viggiano R; Trazzi S; De Franceschi M; Bartesaghi R; Ciani E
    Neurobiol Dis; 2015 Oct; 82():298-310. PubMed ID: 26143616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling.
    Fuchs C; Trazzi S; Torricella R; Viggiano R; De Franceschi M; Amendola E; Gross C; Calzà L; Bartesaghi R; Ciani E
    Neurobiol Dis; 2014 Oct; 70(100):53-68. PubMed ID: 24952363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder.
    Galvani G; Mottolese N; Gennaccaro L; Loi M; Medici G; Tassinari M; Fuchs C; Ciani E; Trazzi S
    J Neuroinflammation; 2021 Jul; 18(1):155. PubMed ID: 34238328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopaminergic loss of cyclin-dependent kinase-like 5 recapitulates methylphenidate-remediable hyperlocomotion in mouse model of CDKL5 deficiency disorder.
    Jhang CL; Lee HY; Chen JC; Liao W
    Hum Mol Genet; 2020 Aug; 29(14):2408-2419. PubMed ID: 32588892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.