These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32125726)

  • 1. Rise of the Robots.
    Carson N
    Chemistry; 2020 Mar; 26(15):3194-3196. PubMed ID: 32125726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.
    Krska SW; DiRocco DA; Dreher SD; Shevlin M
    Acc Chem Res; 2017 Dec; 50(12):2976-2985. PubMed ID: 29172435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahigh-Throughput Experimentation for Information-Rich Chemical Synthesis.
    Mahjour B; Shen Y; Cernak T
    Acc Chem Res; 2021 May; 54(10):2337-2346. PubMed ID: 33891404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic chemistry. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules.
    Buitrago Santanilla A; Regalado EL; Pereira T; Shevlin M; Bateman K; Campeau LC; Schneeweis J; Berritt S; Shi ZC; Nantermet P; Liu Y; Helmy R; Welch CJ; Vachal P; Davies IW; Cernak T; Dreher SD
    Science; 2015 Jan; 347(6217):49-53. PubMed ID: 25554781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chemical-biological interface: developments in automated and miniaturised screening technology.
    Houston JG; Banks M
    Curr Opin Biotechnol; 1997 Dec; 8(6):734-40. PubMed ID: 9425665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling synthesis in fragment-based drug discovery (FBDD): microscale high-throughput optimisation of the medicinal chemist's toolbox reactions.
    Townley C; Branduardi D; Chessari G; Cons BD; Griffiths-Jones C; Hall RJ; Johnson CN; Ochi Y; Whibley S; Grainger R
    RSC Med Chem; 2023 Dec; 14(12):2699-2713. PubMed ID: 38107176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel purification of microscale libraries via automated solid phase extraction.
    Wleklinski M; Carpenter PM; Dykstra KD; Donofrio A; Nowak T; Krska SW; Ferguson RD
    SLAS Technol; 2024 Apr; 29(2):100126. PubMed ID: 38423211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Experimentation Powers Data Science in Chemistry.
    Shi Y; Prieto PL; Zepel T; Grunert S; Hein JE
    Acc Chem Res; 2021 Feb; 54(3):546-555. PubMed ID: 33471522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current status and future prospects for enabling chemistry technology in the drug discovery process.
    Djuric SW; Hutchins CW; Talaty NN
    F1000Res; 2016; 5():2426. PubMed ID: 27781094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the chemical 'reactome' with high-throughput experimentation data.
    King-Smith E; Berritt S; Bernier L; Hou X; Klug-McLeod JL; Mustakis J; Sach NW; Tucker JW; Yang Q; Howard RM; Lee AA
    Nat Chem; 2024 Apr; 16(4):633-643. PubMed ID: 38168924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automation in medicinal chemistry.
    Reader JC
    Curr Top Med Chem; 2004; 4(7):671-86. PubMed ID: 15032681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automation isn't automatic.
    Christensen M; Yunker LPE; Shiri P; Zepel T; Prieto PL; Grunert S; Bork F; Hein JE
    Chem Sci; 2021 Dec; 12(47):15473-15490. PubMed ID: 35003576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor.
    Rein J; Annand JR; Wismer MK; Fu J; Siu JC; Klapars A; Strotman NA; Kalyani D; Lehnherr D; Lin S
    ACS Cent Sci; 2021 Aug; 7(8):1347-1355. PubMed ID: 34471679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated systems for protein crystallization.
    Bard J; Ercolani K; Svenson K; Olland A; Somers W
    Methods; 2004 Nov; 34(3):329-47. PubMed ID: 15325651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Industrial Coatings Research at The Dow Chemical Company.
    Kuo TC; Malvadkar NA; Drumright R; Cesaretti R; Bishop MT
    ACS Comb Sci; 2016 Sep; 18(9):507-26. PubMed ID: 27440008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A survey on dielectric elastomer actuators for soft robots.
    Gu GY; Zhu J; Zhu LM; Zhu X
    Bioinspir Biomim; 2017 Jan; 12(1):011003. PubMed ID: 28114111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in analytical techniques for high throughput experimentation.
    Vervoort N; Goossens K; Baeten M; Chen Q
    Anal Sci Adv; 2021 Apr; 2(3-4):109-127. PubMed ID: 38716456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial approaches as a component of high-throughput experimentation (HTE) in catalysis research.
    Newsam JM; Schüth F
    Biotechnol Bioeng; 1998-1999; 61(4):203-16. PubMed ID: 10494070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking chemical kinetics in high-throughput systems.
    Boelens HF; Iron D; Westerhuis JA; Rothenberg G
    Chemistry; 2003 Aug; 9(16):3876-81. PubMed ID: 12916112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multifunctional Microfluidic Platform for High-Throughput Experimentation of Electroorganic Chemistry.
    Mo Y; Rughoobur G; Nambiar AMK; Zhang K; Jensen KF
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20890-20894. PubMed ID: 32767545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.