BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 32125787)

  • 81. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments.
    Albritton JL; Miller JS
    Dis Model Mech; 2017 Jan; 10(1):3-14. PubMed ID: 28067628
    [TBL] [Abstract][Full Text] [Related]  

  • 82. 3D bioprinting using stem cells.
    Ong CS; Yesantharao P; Huang CY; Mattson G; Boktor J; Fukunishi T; Zhang H; Hibino N
    Pediatr Res; 2018 Jan; 83(1-2):223-231. PubMed ID: 28985202
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Challenges in Three-Dimensional Printing of Bone Substitutes.
    Masaeli R; Zandsalimi K; Rasoulianboroujeni M; Tayebi L
    Tissue Eng Part B Rev; 2019 Oct; 25(5):387-397. PubMed ID: 31144596
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Print Me an Organ? Ethical and Regulatory Issues Emerging from 3D Bioprinting in Medicine.
    Gilbert F; O'Connell CD; Mladenovska T; Dodds S
    Sci Eng Ethics; 2018 Feb; 24(1):73-91. PubMed ID: 28185142
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Three-dimensional bioprinting in tissue engineering and regenerative medicine.
    Gao G; Cui X
    Biotechnol Lett; 2016 Feb; 38(2):203-11. PubMed ID: 26466597
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Three-dimensional bioprinting human cardiac tissue chips of using a painting needle method.
    Chikae S; Kubota A; Nakamura H; Oda A; Yamanaka A; Akagi T; Akashi M
    Biotechnol Bioeng; 2019 Nov; 116(11):3136-3142. PubMed ID: 31369146
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Construction of in vitro liver-on-a-chip models and application progress.
    Liu J; Du Y; Xiao X; Tan D; He Y; Qin L
    Biomed Eng Online; 2024 Mar; 23(1):33. PubMed ID: 38491482
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.
    Ouyang L; Yao R; Mao S; Chen X; Na J; Sun W
    Biofabrication; 2015 Nov; 7(4):044101. PubMed ID: 26531008
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing.
    Cheng F; Cao X; Li H; Liu T; Xie X; Huang D; Maharjan S; Bei HP; Gómez A; Li J; Zhan H; Shen H; Liu S; He J; Zhang YS
    Nano Lett; 2019 Jun; 19(6):3603-3611. PubMed ID: 31010289
    [TBL] [Abstract][Full Text] [Related]  

  • 90. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Optimising the biocompatibility of 3D printed photopolymer constructs in vitro and in vivo.
    Ngan CGY; O'Connell CD; Blanchard R; Boyd-Moss M; Williams RJ; Bourke J; Quigley A; McKelvie P; Kapsa RMI; Choong PFM
    Biomed Mater; 2019 Mar; 14(3):035007. PubMed ID: 30795002
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Enabling personalized implant and controllable biosystem development through 3D printing.
    Nagarajan N; Dupret-Bories A; Karabulut E; Zorlutuna P; Vrana NE
    Biotechnol Adv; 2018; 36(2):521-533. PubMed ID: 29428560
    [TBL] [Abstract][Full Text] [Related]  

  • 93. 3D Modeling of Epithelial Tumors-The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology.
    Trivedi P; Liu R; Bi H; Xu C; Rosenholm JM; Åkerfelt M
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34207601
    [TBL] [Abstract][Full Text] [Related]  

  • 94. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Vascularization Strategies in 3D Cell Culture Models: From Scaffold-Free Models to 3D Bioprinting.
    Anthon SG; Valente KP
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498908
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices.
    Chinga-Carrasco G
    Biomacromolecules; 2018 Mar; 19(3):701-711. PubMed ID: 29489338
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Seeding A Growing Organ.
    Sotra A; Zhang B
    Trends Biotechnol; 2021 Aug; 39(8):753-754. PubMed ID: 34103169
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Application of 3D bioprinting in the prevention and the therapy for human diseases.
    Yi HG; Kim H; Kwon J; Choi YJ; Jang J; Cho DW
    Signal Transduct Target Ther; 2021 May; 6(1):177. PubMed ID: 33986257
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Constructing 3D In Vitro Models of Heterocellular Solid Tumors and Stromal Tissues Using Extrusion-Based Bioprinting.
    Flores-Torres S; Jiang T; Kort-Mascort J; Yang Y; Peza-Chavez O; Pal S; Mainolfi A; Pardo LA; Ferri L; Bertos N; Sangwan V; Kinsella JM
    ACS Biomater Sci Eng; 2023 Feb; 9(2):542-561. PubMed ID: 36598339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.