These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Role of slip between a probe particle and a gel in microrheology. Fu HC; Shenoy VB; Powers TR Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061503. PubMed ID: 19256842 [TBL] [Abstract][Full Text] [Related]
44. Sign change in the net force in sphere-plate and sphere-sphere systems immersed in nonpolar critical fluid due to the interplay between the critical Casimir and dispersion van der Waals forces. Valchev G; Dantchev D Phys Rev E; 2017 Aug; 96(2-1):022107. PubMed ID: 28950495 [TBL] [Abstract][Full Text] [Related]
45. Molecular simulation of cooperative hydrodynamic effects in motion of a periodic array of spheres between parallel walls. Kohale SC; Khare R J Chem Phys; 2008 Oct; 129(16):164706. PubMed ID: 19045297 [TBL] [Abstract][Full Text] [Related]
46. Predicting different adhesive regimens of circulating particles at blood capillary walls. Coclite A; Mollica H; Ranaldo S; Pascazio G; de Tullio MD; Decuzzi P Microfluid Nanofluidics; 2017; 21(11):168. PubMed ID: 32009866 [TBL] [Abstract][Full Text] [Related]
47. Brownian motion as a new probe of wettability. Mo J; Simha A; Raizen MG J Chem Phys; 2017 Apr; 146(13):134707. PubMed ID: 28390354 [TBL] [Abstract][Full Text] [Related]
48. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions. De Luca S; Todd BD; Hansen JS; Daivis PJ Langmuir; 2014 Mar; 30(11):3095-109. PubMed ID: 24575940 [TBL] [Abstract][Full Text] [Related]
49. Influence of confinement by smooth and rough walls on particle dynamics in dense hard-sphere suspensions. Eral HB; van den Ende D; Mugele F; Duits MH Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061403. PubMed ID: 20365171 [TBL] [Abstract][Full Text] [Related]
51. Settling slip velocity of a spherical particle in an unbounded micropolar fluid. El-Sapa S Eur Phys J E Soft Matter; 2019 Mar; 42(3):32. PubMed ID: 30879156 [TBL] [Abstract][Full Text] [Related]
52. Flutter to tumble transition of buoyant spheres triggered by rotational inertia changes. Mathai V; Zhu X; Sun C; Lohse D Nat Commun; 2018 May; 9(1):1792. PubMed ID: 29728557 [TBL] [Abstract][Full Text] [Related]
53. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls. Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374 [TBL] [Abstract][Full Text] [Related]
54. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Sommerfeld M; Cui Y; Schmalfuß S Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814 [TBL] [Abstract][Full Text] [Related]
55. Rheology of Colloidal Particles in a Confined Channel under Shear Flow by Brownian Dynamic Simulations. Valdez MA; Manero O J Colloid Interface Sci; 1997 Jun; 190(1):81-91. PubMed ID: 9241145 [TBL] [Abstract][Full Text] [Related]
56. Topological defects of dipole patchy particles on a spherical surface. Lieu UT; Yoshinaga N Soft Matter; 2020 Aug; 16(33):7667-7675. PubMed ID: 32804175 [TBL] [Abstract][Full Text] [Related]
57. Molecular dynamics simulation study of friction force and torque on a rough spherical particle. Kohale SC; Khare R J Chem Phys; 2010 Jun; 132(23):234706. PubMed ID: 20572733 [TBL] [Abstract][Full Text] [Related]
59. Electrokinetic motion of a charged colloidal sphere in a spherical cavity with magnetic fields. Hsieh TH; Keh HJ J Chem Phys; 2011 Jan; 134(4):044125. PubMed ID: 21280705 [TBL] [Abstract][Full Text] [Related]
60. Optimal kinematic dynamos in a sphere. Luo J; Chen L; Li K; Jackson A Proc Math Phys Eng Sci; 2020 Jan; 476(2233):20190675. PubMed ID: 32082068 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]