These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations. Vitorović-Todorović MD; Koukoulitsa C; Juranić IO; Mandić LM; Drakulić BJ Eur J Med Chem; 2014 Jun; 81():158-75. PubMed ID: 24836068 [TBL] [Abstract][Full Text] [Related]
23. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones. Shah MS; Khan SU; Ejaz SA; Afridi S; Rizvi SUF; Najam-Ul-Haq M; Iqbal J Biochem Biophys Res Commun; 2017 Jan; 482(4):615-624. PubMed ID: 27865835 [TBL] [Abstract][Full Text] [Related]
24. Design, Synthesis, and Biological Evaluation of a New Series of Biphenyl/Bibenzyl Derivatives Functioning as Dual Inhibitors of Acetylcholinesterase and Butyrylcholinesterase. Wang DM; Feng B; Fu H; Liu AL; Wang L; Du GH; Wu S Molecules; 2017 Jan; 22(1):. PubMed ID: 28117700 [TBL] [Abstract][Full Text] [Related]
25. Design, synthesis and biological activity of novel tacrine-isatin Schiff base hybrid derivatives. Riazimontazer E; Sadeghpour H; Nadri H; Sakhteman A; Tüylü Küçükkılınç T; Miri R; Edraki N Bioorg Chem; 2019 Aug; 89():103006. PubMed ID: 31158577 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and cholinesterase inhibitory activity study of new piperidone grafted spiropyrrolidines. Basiri A; Abd Razik BM; Ezzat MO; Kia Y; Kumar RS; Almansour AI; Arumugam N; Murugaiyah V Bioorg Chem; 2017 Dec; 75():210-216. PubMed ID: 28987876 [TBL] [Abstract][Full Text] [Related]
28. Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives. Orhan IE; Jedrejek D; Senol FS; Salmas RE; Durdagi S; Kowalska I; Pecio L; Oleszek W Phytomedicine; 2018 Mar; 42():25-33. PubMed ID: 29655693 [TBL] [Abstract][Full Text] [Related]
29. Novel N-benzylpyridinium moiety linked to arylisoxazole derivatives as selective butyrylcholinesterase inhibitors: Synthesis, biological evaluation, and docking study. Vafadarnejad F; Karimpour-Razkenari E; Sameem B; Saeedi M; Firuzi O; Edraki N; Mahdavi M; Akbarzadeh T Bioorg Chem; 2019 Nov; 92():103192. PubMed ID: 31446239 [TBL] [Abstract][Full Text] [Related]
30. Cholinesterase inhibitory activity versus aromatic core multiplicity: a facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines. Basiri A; Murugaiyah V; Osman H; Kumar RS; Kia Y; Hooda A; Parsons RB Bioorg Med Chem; 2014 Jan; 22(2):906-16. PubMed ID: 24369842 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and anticholinesterase activity of new substituted benzo[d]oxazole-based derivatives. Pouramiri B; Moghimi S; Mahdavi M; Nadri H; Moradi A; Tavakolinejad-Kermani E; Firoozpour L; Asadipour A; Foroumadi A Chem Biol Drug Des; 2017 May; 89(5):783-789. PubMed ID: 27863021 [TBL] [Abstract][Full Text] [Related]
32. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors. Mughal EU; Sadiq A; Murtaza S; Rafique H; Zafar MN; Riaz T; Khan BA; Hameed A; Khan KM Bioorg Med Chem; 2017 Jan; 25(1):100-106. PubMed ID: 27780618 [TBL] [Abstract][Full Text] [Related]
33. Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors. Daoud I; Melkemi N; Salah T; Ghalem S Comput Biol Chem; 2018 Jun; 74():304-326. PubMed ID: 29747032 [TBL] [Abstract][Full Text] [Related]
34. Synthesis, preliminarily biological evaluation and molecular docking study of new Olaparib analogues as multifunctional PARP-1 and cholinesterase inhibitors. Gao CZ; Dong W; Cui ZW; Yuan Q; Hu XM; Wu QM; Han X; Xu Y; Min ZL J Enzyme Inhib Med Chem; 2019 Dec; 34(1):150-162. PubMed ID: 30427217 [TBL] [Abstract][Full Text] [Related]
35. Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors. Cheng ZQ; Zhu KK; Zhang J; Song JL; Muehlmann LA; Jiang CS; Liu CL; Zhang H Bioorg Chem; 2019 Mar; 83():277-288. PubMed ID: 30391700 [TBL] [Abstract][Full Text] [Related]
36. Biological and computational evaluation of novel benzofuranyl derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Usanmaz H; Taş Ö; Ekinci D; Uba AI; Atmaca U Future Med Chem; 2024; 16(11):1075-1085. PubMed ID: 38916565 [TBL] [Abstract][Full Text] [Related]
37. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases. Jung HA; Ali MY; Jung HJ; Jeong HO; Chung HY; Choi JS J Ethnopharmacol; 2016 Sep; 191():152-160. PubMed ID: 27321278 [TBL] [Abstract][Full Text] [Related]
38. In Silico Analysis of Green Tea Polyphenols as Inhibitors of AChE and BChE Enzymes in Alzheimer's Disease Treatment. Ali B; Jamal QM; Shams S; Al-Wabel NA; Siddiqui MU; Alzohairy MA; Al Karaawi MA; Kesari KK; Mushtaq G; Kamal MA CNS Neurol Disord Drug Targets; 2016; 15(5):624-8. PubMed ID: 26996169 [TBL] [Abstract][Full Text] [Related]
39. An Efficient Synthesis of bi-Aryl Pyrimidine Heterocycles: Potential New Drug Candidates to Treat Alzheimer's Disease. Rehman TU; Khan IU; Ashraf M; Tarazi H; Riaz S; Yar M Arch Pharm (Weinheim); 2017 Apr; 350(3-4):. PubMed ID: 28220522 [TBL] [Abstract][Full Text] [Related]
40. Design and synthesis of phenoxy methyl-oxadiazole compounds against Alzheimer's disease. Evren AE; Nuha D; Özkan BNS; Kahraman Ç; Gönülalan EM; Yurttaş L Arch Pharm (Weinheim); 2024 Aug; 357(8):e2400115. PubMed ID: 38657203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]