These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Influence of the Length and Charge on the Activity of α-Helical Amphipathic Antimicrobial Peptides. Gagnon MC; Strandberg E; Grau-Campistany A; Wadhwani P; Reichert J; Bürck J; Rabanal F; Auger M; Paquin JF; Ulrich AS Biochemistry; 2017 Mar; 56(11):1680-1695. PubMed ID: 28282123 [TBL] [Abstract][Full Text] [Related]
3. Chiral supramolecular architecture of stable transmembrane pores formed by an α-helical antibiotic peptide in the presence of lyso-lipids. Strandberg E; Bentz D; Wadhwani P; Ulrich AS Sci Rep; 2020 Mar; 10(1):4710. PubMed ID: 32170095 [TBL] [Abstract][Full Text] [Related]
5. Structure analysis of the membrane-bound dermcidin-derived peptide SSL-25 from human sweat. Mühlhäuser P; Wadhwani P; Strandberg E; Bürck J; Ulrich AS Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2308-2318. PubMed ID: 28888369 [TBL] [Abstract][Full Text] [Related]
6. Helix Fraying and Lipid-Dependent Structure of a Short Amphipathic Membrane-Bound Peptide Revealed by Solid-State NMR. Strandberg E; Grau-Campistany A; Wadhwani P; Bürck J; Rabanal F; Ulrich AS J Phys Chem B; 2018 Jun; 122(23):6236-6250. PubMed ID: 29856607 [TBL] [Abstract][Full Text] [Related]
7. Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Grau-Campistany A; Strandberg E; Wadhwani P; Reichert J; Bürck J; Rabanal F; Ulrich AS Sci Rep; 2015 Mar; 5():9388. PubMed ID: 25807192 [TBL] [Abstract][Full Text] [Related]
8. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. Aisenbrey C; Marquette A; Bechinger B Adv Exp Med Biol; 2019; 1117():33-64. PubMed ID: 30980352 [TBL] [Abstract][Full Text] [Related]
9. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
10. Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Oren Z; Ramesh J; Avrahami D; Suryaprakash N; Shai Y; Jelinek R Eur J Biochem; 2002 Aug; 269(16):3869-80. PubMed ID: 12180963 [TBL] [Abstract][Full Text] [Related]
11. Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin. Tremouilhac P; Strandberg E; Wadhwani P; Ulrich AS J Biol Chem; 2006 Oct; 281(43):32089-94. PubMed ID: 16877761 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the mechanism of action of novel amphipathic peptides: insights from solid-state NMR studies of oriented lipid bilayers. Fillion M; Noël M; Lorin A; Voyer N; Auger M Biochim Biophys Acta; 2014 Sep; 1838(9):2173-9. PubMed ID: 24508758 [TBL] [Abstract][Full Text] [Related]
13. Importance of residue 13 and the C-terminus for the structure and activity of the antimicrobial peptide aurein 2.2. Cheng JT; Hale JD; Kindrachuk J; Jenssen H; Elliott M; Hancock RE; Straus SK Biophys J; 2010 Nov; 99(9):2926-35. PubMed ID: 21044590 [TBL] [Abstract][Full Text] [Related]
14. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [TBL] [Abstract][Full Text] [Related]
15. Amphipathic antimicrobial piscidin in magnetically aligned lipid bilayers. De Angelis AA; Grant CV; Baxter MK; McGavin JA; Opella SJ; Cotten ML Biophys J; 2011 Sep; 101(5):1086-94. PubMed ID: 21889445 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
17. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
18. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Oh D; Shin SY; Lee S; Kang JH; Kim SD; Ryu PD; Hahm KS; Kim Y Biochemistry; 2000 Oct; 39(39):11855-64. PubMed ID: 11009597 [TBL] [Abstract][Full Text] [Related]
19. Effect of helical kink in antimicrobial peptides on membrane pore formation. Tuerkova A; Kabelka I; Králová T; Sukeník L; Pokorná Š; Hof M; Vácha R Elife; 2020 Mar; 9():. PubMed ID: 32167466 [TBL] [Abstract][Full Text] [Related]
20. Membrane Interactions of Latarcins: Antimicrobial Peptides from Spider Venom. Wadhwani P; Sekaran S; Strandberg E; Bürck J; Chugh A; Ulrich AS Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]