BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32126258)

  • 1. Multi-scale approaches for the simulation of cardiac electrophysiology: I - Sub-cellular and stochastic calcium dynamics from cell to organ.
    Colman MA; Holmes M; Whittaker DG; Jayasinghe I; Benson AP
    Methods; 2021 Jan; 185():49-59. PubMed ID: 32126258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function.
    Benson AP; Stevenson-Cocks HJ; Whittaker DG; White E; Colman MA
    Methods; 2021 Jan; 185():60-81. PubMed ID: 31988002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment.
    Margara F; Wang ZJ; Levrero-Florencio F; Santiago A; Vázquez M; Bueno-Orovio A; Rodriguez B
    Prog Biophys Mol Biol; 2021 Jan; 159():58-74. PubMed ID: 32710902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Models of excitation-contraction coupling in cardiac ventricular myocytes.
    Jafri MS
    Methods Mol Biol; 2012; 910():309-35. PubMed ID: 22821602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives.
    Colman MA; Alvarez-Lacalle E; Echebarria B; Sato D; Sutanto H; Heijman J
    Front Physiol; 2022; 13():836622. PubMed ID: 35370783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block.
    Tomek J; Bueno-Orovio A; Passini E; Zhou X; Minchole A; Britton O; Bartolucci C; Severi S; Shrier A; Virag L; Varro A; Rodriguez B
    Elife; 2019 Dec; 8():. PubMed ID: 31868580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Modeling of Cardiac Electrophysiology.
    Ni H; Grandi E
    Methods Mol Biol; 2024; 2735():63-103. PubMed ID: 38038844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies.
    Sutanto H; Lyon A; Lumens J; Schotten U; Dobrev D; Heijman J
    Prog Biophys Mol Biol; 2020 Nov; 157():54-75. PubMed ID: 32188566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: Translation from pig to human electrophysiology.
    Gaur N; Qi XY; Benoist D; Bernus O; Coronel R; Nattel S; Vigmond EJ
    PLoS Comput Biol; 2021 Jun; 17(6):e1009137. PubMed ID: 34191797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling between re-entrant and focal excitation.
    Colman MA
    PLoS Comput Biol; 2019 Aug; 15(8):e1007260. PubMed ID: 31393876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
    Trayanova NA; Lyon A; Shade J; Heijman J
    Physiol Rev; 2024 Jul; 104(3):1265-1333. PubMed ID: 38153307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Models of cardiac excitation-contraction coupling in ventricular myocytes.
    Williams GS; Smith GD; Sobie EA; Jafri MS
    Math Biosci; 2010 Jul; 226(1):1-15. PubMed ID: 20346962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights on the cardiac safety factor: Unraveling the relationship between conduction velocity and robustness of propagation.
    Boyle PM; Franceschi WH; Constantin M; Hawks C; Desplantez T; Trayanova NA; Vigmond EJ
    J Mol Cell Cardiol; 2019 Mar; 128():117-128. PubMed ID: 30677394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational cardiac electrophysiology: implementing mathematical models of cardiomyocytes to simulate action potentials of the heart.
    Bell MM; Cherry EM
    Methods Mol Biol; 2015; 1299():65-74. PubMed ID: 25836575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling.
    Koivumäki JT; Korhonen T; Takalo J; Weckström M; Tavi P
    BMC Physiol; 2009 Aug; 9():16. PubMed ID: 19715618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.
    Pfeiffer ER; Tangney JR; Omens JH; McCulloch AD
    J Biomech Eng; 2014 Feb; 136(2):021007. PubMed ID: 24337452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibrotic Remodeling during Persistent Atrial Fibrillation: In Silico Investigation of the Role of Calcium for Human Atrial Myofibroblast Electrophysiology.
    Sánchez J; Trenor B; Saiz J; Dössel O; Loewe A
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative Computational Modeling of Cardiomyocyte Calcium Handling and Cardiac Arrhythmias: Current Status and Future Challenges.
    Sutanto H; Heijman J
    Cells; 2022 Mar; 11(7):. PubMed ID: 35406654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fully coupled model for electromechanics of the heart.
    Xia H; Wong K; Zhao X
    Comput Math Methods Med; 2012; 2012():927279. PubMed ID: 23118801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the effect of gap junctions on tissue-level cardiac electrophysiology.
    Bruce D; Pathmanathan P; Whiteley JP
    Bull Math Biol; 2014 Feb; 76(2):431-54. PubMed ID: 24338526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.