BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 32126270)

  • 1. Brain microRNAs dysregulation: Implication for missplicing and abnormal post-translational modifications of tau protein in Alzheimer's disease and related tauopathies.
    Bazrgar M; Khodabakhsh P; Mohagheghi F; Prudencio M; Ahmadiani A
    Pharmacol Res; 2020 May; 155():104729. PubMed ID: 32126270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new non-aggregative splicing isoform of human Tau is decreased in Alzheimer's disease.
    García-Escudero V; Ruiz-Gabarre D; Gargini R; Pérez M; García E; Cuadros R; Hernández IH; Cabrera JR; García-Escudero R; Lucas JJ; Hernández F; Ávila J
    Acta Neuropathol; 2021 Jul; 142(1):159-177. PubMed ID: 33934221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of tau self-aggregation and neurotoxicity.
    Farías G; Cornejo A; Jiménez J; Guzmán L; Maccioni RB
    Curr Alzheimer Res; 2011 Sep; 8(6):608-14. PubMed ID: 21605046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology.
    Song L; Lu SX; Ouyang X; Melchor J; Lee J; Terracina G; Wang X; Hyde L; Hess JF; Parker EM; Zhang L
    Mol Neurodegener; 2015 Mar; 10():14. PubMed ID: 25881209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of tau isoform transcripts in sporadic tauopathies.
    Connell JW; Rodriguez-Martin T; Gibb GM; Kahn NM; Grierson AJ; Hanger DP; Revesz T; Lantos PL; Anderton BH; Gallo JM
    Brain Res Mol Brain Res; 2005 Jun; 137(1-2):104-9. PubMed ID: 15950767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttranslational modifications of tau--role in human tauopathies and modeling in transgenic animals.
    Chen F; David D; Ferrari A; Götz J
    Curr Drug Targets; 2004 Aug; 5(6):503-15. PubMed ID: 15270197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies.
    Sinsky J; Pichlerova K; Hanes J
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tau Abnormalities and the Potential Therapy in Alzheimer's Disease.
    Almansoub HAMM; Tang H; Wu Y; Wang DQ; Mahaman YAR; Wei N; Almansob YAM; He W; Liu D
    J Alzheimers Dis; 2019; 67(1):13-33. PubMed ID: 30507581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies.
    Gu J; Chen F; Iqbal K; Gong CX; Wang X; Liu F
    J Biol Chem; 2017 Jun; 292(25):10600-10612. PubMed ID: 28487370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Functional Role of microRNAs in the Pathogenesis of Tauopathy.
    Praticò D
    Cells; 2020 Oct; 9(10):. PubMed ID: 33050194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dementia Therapy Targeting Tau.
    Buee L
    Adv Exp Med Biol; 2019; 1184():407-416. PubMed ID: 32096053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease-modifying strategies in primary tauopathies.
    Rösler TW; Costa M; Höglinger GU
    Neuropharmacology; 2020 May; 167():107842. PubMed ID: 31704274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of retinoblastoma binding protein 7 (Rbbp7) as a mediator against tau acetylation and subsequent neuronal loss in Alzheimer's disease and related tauopathies.
    Dave N; Vural AS; Piras IS; Winslow W; Surendra L; Winstone JK; Beach TG; Huentelman MJ; Velazquez R
    Acta Neuropathol; 2021 Aug; 142(2):279-294. PubMed ID: 33978814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tauopathies.
    Hernández F; Avila J
    Cell Mol Life Sci; 2007 Sep; 64(17):2219-33. PubMed ID: 17604998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific post-translational modifications of soluble tau protein distinguishes Alzheimer's disease and primary tauopathies.
    Kyalu Ngoie Zola N; Balty C; Pyr Dit Ruys S; Vanparys AAT; Huyghe NDG; Herinckx G; Johanns M; Boyer E; Kienlen-Campard P; Rider MH; Vertommen D; Hanseeuw BJ
    Nat Commun; 2023 Jun; 14(1):3706. PubMed ID: 37349319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of tau protein in health and disease.
    Guo T; Noble W; Hanger DP
    Acta Neuropathol; 2017 May; 133(5):665-704. PubMed ID: 28386764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased pro-nerve growth factor and decreased brain-derived neurotrophic factor in non-Alzheimer's disease tauopathies.
    Belrose JC; Masoudi R; Michalski B; Fahnestock M
    Neurobiol Aging; 2014 Apr; 35(4):926-33. PubMed ID: 24112788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tauopathy: A common mechanism for neurodegeneration and brain aging.
    Saha P; Sen N
    Mech Ageing Dev; 2019 Mar; 178():72-79. PubMed ID: 30668956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further understanding of tau phosphorylation: implications for therapy.
    Medina M; Avila J
    Expert Rev Neurother; 2015 Jan; 15(1):115-22. PubMed ID: 25555397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tau Interacting Proteins: Gaining Insight into the Roles of Tau in Health and Disease.
    Stancu IC; Ferraiolo M; Terwel D; Dewachter I
    Adv Exp Med Biol; 2019; 1184():145-166. PubMed ID: 32096036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.