These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32126329)

  • 1. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air.
    Li T; Li H; Li C
    Chemosphere; 2020 Jul; 250():126338. PubMed ID: 32126329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment.
    Wu H; Yan H; Quan Y; Zhao H; Jiang N; Yin C
    J Environ Manage; 2018 Sep; 222():409-419. PubMed ID: 29883876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds.
    Cheng Y; He H; Yang C; Zeng G; Li X; Chen H; Yu G
    Biotechnol Adv; 2016 Nov; 34(6):1091-1102. PubMed ID: 27374790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of presence of hydrophilic volatile organic compounds on removal of hydrophobic n-hexane in biotrickling filters.
    Cheng Y; Li X; Liu H; Yang C; Wu S; Du C; Nie L; Zhong Y
    Chemosphere; 2020 Aug; 252():126490. PubMed ID: 32220715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.
    Huang B; Lei C; Wei C; Zeng G
    Environ Int; 2014 Oct; 71():118-38. PubMed ID: 25016450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioreactors for treatment of VOCs and odours - a review.
    Mudliar S; Giri B; Padoley K; Satpute D; Dixit R; Bhatt P; Pandey R; Juwarkar A; Vaidya A
    J Environ Manage; 2010 May; 91(5):1039-54. PubMed ID: 20181422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: A review.
    Mu Y; Williams PT
    Chemosphere; 2022 Dec; 308(Pt 3):136481. PubMed ID: 36165927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a combined system of biotrickling filter and photocatalytic reactor in treating waste gases from a paint-manufacturing plant.
    Zeng P; Li J; Liao D; Tu X; Xu M; Sun G
    Environ Technol; 2016; 37(2):237-44. PubMed ID: 26137915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds.
    Muñoz R; Daugulis AJ; Hernández M; Quijano G
    Biotechnol Adv; 2012; 30(6):1707-20. PubMed ID: 22960620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced biodegradation of styrene vapors in the biotrickling filter inoculated with biosurfactant-generating bacteria under H
    Rezaei M; Moussavi G; Naddafi K; Johnson MS
    Sci Total Environ; 2020 Feb; 704():135325. PubMed ID: 31839317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dichloromethane removal and microbial variations in a combination of UV pretreatment and biotrickling filtration.
    Jianming Y; Wei L; Zhuowei C; Yifeng J; Wenji C; Jianmeng C
    J Hazard Mater; 2014 Mar; 268():14-22. PubMed ID: 24462987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced removal of hydrophobic volatile organic compounds in biofilters and biotrickling filters: A review on the use of surfactants and the addition of hydrophilic compounds.
    Lamprea Pineda PA; Demeestere K; Toledo M; Van Langenhove H; Walgraeve C
    Chemosphere; 2021 Sep; 279():130757. PubMed ID: 34134429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of volatile organic compounds by biofiltration: a review.
    Nikiema J; Dastous PA; Heitz M
    Rev Environ Health; 2007; 22(4):273-94. PubMed ID: 18351227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A demonstration of biofiltration for VOC removal in petrochemical industries.
    Zhao L; Huang S; Wei Z
    Environ Sci Process Impacts; 2014 May; 16(5):1001-7. PubMed ID: 24569855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: a pilot-scale investigation.
    Li G; Zhang Z; Sun H; Chen J; An T; Li B
    J Hazard Mater; 2013 Apr; 250-251():147-54. PubMed ID: 23434489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary microbioreactors for VOC vapor treatment: Impacts of operating conditions.
    López de León LR; Deaton KE; Junkin J; Deshusses MA
    Chemosphere; 2020 Nov; 258():127286. PubMed ID: 32544811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effluents from MBT plants: plasma techniques for the treatment of VOCs.
    Ragazzi M; Tosi P; Rada EC; Torretta V; Schiavon M
    Waste Manag; 2014 Nov; 34(11):2400-6. PubMed ID: 25168185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds.
    Baskaran D; Dhamodharan D; Behera US; Byun HS
    Environ Res; 2024 Jun; 251(Pt 1):118472. PubMed ID: 38452912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii.
    Marycz M; Rodríguez Y; Gębicki J; Muñoz R
    Chemosphere; 2022 Nov; 306():135608. PubMed ID: 35810858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of saponins on n-hexane removal in biotrickling filters.
    Tu Y; Yang C; Cheng Y; Zeng G; Lu L; Wang L
    Bioresour Technol; 2015 Jan; 175():231-8. PubMed ID: 25459827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.